pyspark collect_set or collect_list with groupby

亡梦爱人 提交于 2019-11-26 04:45:12

问题


How can I use collect_set or collect_list on a dataframe after groupby. for example: df.groupby(\'key\').collect_set(\'values\'). I get an error: AttributeError: \'GroupedData\' object has no attribute \'collect_set\'


回答1:


You need to use agg. Example:

from pyspark import SparkContext
from pyspark.sql import HiveContext
from pyspark.sql import functions as F

sc = SparkContext("local")

sqlContext = HiveContext(sc)

df = sqlContext.createDataFrame([
    ("a", None, None),
    ("a", "code1", None),
    ("a", "code2", "name2"),
], ["id", "code", "name"])

df.show()

+---+-----+-----+
| id| code| name|
+---+-----+-----+
|  a| null| null|
|  a|code1| null|
|  a|code2|name2|
+---+-----+-----+

Note in the above you have to create a HiveContext. See https://stackoverflow.com/a/35529093/690430 for dealing with different Spark versions.

(df
  .groupby("id")
  .agg(F.collect_set("code"),
       F.collect_list("name"))
  .show())

+---+-----------------+------------------+
| id|collect_set(code)|collect_list(name)|
+---+-----------------+------------------+
|  a|   [code1, code2]|           [name2]|
+---+-----------------+------------------+



回答2:


If your dataframe is large, you can try using pandas udf(GROUPED_AGG) to avoid memory error. It is also much faster.

Grouped aggregate Pandas UDFs are similar to Spark aggregate functions. Grouped aggregate Pandas UDFs are used with groupBy().agg() and pyspark.sql.Window. It defines an aggregation from one or more pandas.Series to a scalar value, where each pandas.Series represents a column within the group or window. pandas udf

example:

import pyspark.sql.functions as F

@F.pandas_udf('string', F.PandasUDFType.GROUPED_AGG)
def collect_list(name):
    return ', '.join(name)

grouped_df = df.groupby('id').agg(collect_list(df["name"]).alias('names'))


来源:https://stackoverflow.com/questions/37580782/pyspark-collect-set-or-collect-list-with-groupby

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!