问题
I would like to add error bar in my plot that I can show the min max of each plot. Please, anyone can help me. Thanks in advance.
The min max is as follow:
Delay = (53.46 (min 0, max60) , 36.22 (min 12,max 70), 83 (min 21,max 54), 17 (min 12,max 70)) Latency = (38 (min 2,max 70), 44 (min 12,max 87), 53 (min 9,max 60), 10 (min 11,max 77))
import matplotlib.pyplot as plt
import pandas as pd
from pandas import DataFrame
from matplotlib.dates import date2num
import datetime
Delay = (53.46, 36.22, 83, 17)
Latency = (38, 44, 53, 10)
index = ['T=0', 'T=26', 'T=50','T=900']
df = pd.DataFrame({'Delay': Delay, 'Latency': Latency}, index=index)
ax = df.plot.bar(rot=0)
plt.xlabel('Time')
plt.ylabel('(%)')
plt.ylim(0, 101)
plt.savefig('TestX.png', dpi=300, bbox_inches='tight')
plt.show()
回答1:
- In order to plot in the correct location on a bar plot, the patch data for each bar must be extracted.
- An
ndarrayis returned with one matplotlib.axes.Axes per column.- In the case of this figure,
ax.patchescontains 8 matplotlib.patches.Rectangle objects, one for each segment of each bar.- By using the associated methods for this object, the
height,width, andxlocations can be extracted, and used to draw a line with plt.vlines.
- By using the associated methods for this object, the
- In the case of this figure,
- The
heightof the bar is used to extract the correctminandmaxvalue fromdict,z.- Unfortunately, the patch data does not contain the bar label (e.g.
Delay&Latency).
- Unfortunately, the patch data does not contain the bar label (e.g.
import pandas as pd
import matplotlib.pyplot as plt
# create dataframe
Delay = (53.46, 36.22, 83, 17)
Latency = (38, 44, 53, 10)
index = ['T=0', 'T=26', 'T=50','T=900']
df = pd.DataFrame({'Delay': Delay, 'Latency': Latency}, index=index)
# dicts with errors
Delay_error = {53.46: {'min': 0,'max': 60}, 36.22: {'min': 12,'max': 70}, 83: {'min': 21,'max': 54}, 17: {'min': 12,'max': 70}}
Latency_error = {38: {'min': 2, 'max': 70}, 44: {'min': 12,'max': 87}, 53: {'min': 9,'max': 60}, 10: {'min': 11,'max': 77}}
# combine them; providing all the keys are unique
z = {**Delay_error, **Latency_error}
# plot
ax = df.plot.bar(rot=0)
plt.xlabel('Time')
plt.ylabel('(%)')
plt.ylim(0, 101)
for p in ax.patches:
x = p.get_x() # get the bottom left x corner of the bar
w = p.get_width() # get width of bar
h = p.get_height() # get height of bar
min_y = z[h]['min'] # use h to get min from dict z
max_y = z[h]['max'] # use h to get max from dict z
plt.vlines(x+w/2, min_y, max_y, color='k') # draw a vertical line
- If there are non-unique values in the two
dicts, so they can't be combined, we can select the correctdictbased on the bar plot order. - All the bars for a single label are plotted first.
- In this case, index 0-3 are the
Dalaybars, and 4-7 are theLatencybars
- In this case, index 0-3 are the
for i, p in enumerate(ax.patches):
print(i, p)
x = p.get_x()
w = p.get_width()
h = p.get_height()
if i < len(ax.patches)/2: # select which dictionary to use
d = Delay_error
else:
d = Latency_error
min_y = d[h]['min']
max_y = d[h]['max']
plt.vlines(x+w/2, min_y, max_y, color='k')
来源:https://stackoverflow.com/questions/63866002/how-to-add-error-bars-to-a-grouped-bar-plot