目录
13-4 oob(Out-of-Bag)和关于Bagging的更多讨论
13-4 oob(Out-of-Bag)和关于Bagging的更多讨论
oob
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
bagging_clf = BaggingClassifier(DecisionTreeClassifier(),
n_estimators=500, max_samples=100,
bootstrap=True, oob_score=True)
bagging_clf.fit(X, y)
oob-score为true才能记录哪些在训练中用了,哪些没用
n_jobs
%%time
bagging_clf = BaggingClassifier(DecisionTreeClassifier(),
n_estimators=500, max_samples=100,
bootstrap=True, oob_score=True)
bagging_clf.fit(X, y)
bootstrap_features
random_subspaces_clf = BaggingClassifier(DecisionTreeClassifier(),
n_estimators=500, max_samples=500,
bootstrap=True, oob_score=True,
max_features=1, bootstrap_features=True)
random_subspaces_clf.fit(X, y)
random_subspaces_clf.oob_score_
Bagging的更多探讨
行样本,列特征,行列都随机
来源:oschina
链接:https://my.oschina.net/u/4361903/blog/4312178