【Meta learning】Learning to learn: Meta-Critic Networks for sample efficient learning

怎甘沉沦 提交于 2020-08-06 13:11:19

文章主要问题是解决少样本学习,灵感来自actor-critic增强学习,但可以应用于增强和监督学习。核心方法是学习一个meta-critic——神经网络的行为价值函数,学习去评判解决特殊任务的actor。对于监督学习,相当于一个可训练的任务参数损失发生器。对于增强学习和监督学习,这种方法提供了一种知识迁移途径,可以处理少样本和半监督条件。

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!