extract RGB channels from a jpeg image in R

女生的网名这么多〃 提交于 2019-11-27 19:10:28

You have several package to read in JPEG. Here I use package jpeg:

library(jpeg)
img <- readJPEG("Rlogo.jpg")

dim(img)
[1]  76 100   3

As you can see, there is 3 layers: they correspond to your R, G and B values. In each layer, each cell is a pixel.

img[35:39,50:54,]
, , 1

          [,1]      [,2]      [,3]      [,4]      [,5]
[1,] 0.5098039 0.5921569 0.4549020 0.3372549 0.1921569
[2,] 0.5098039 0.6000000 0.4549020 0.3372549 0.1921569
[3,] 0.5137255 0.6000000 0.4549020 0.3450980 0.1921569
[4,] 0.5215686 0.6039216 0.4627451 0.3450980 0.1921569
[5,] 0.5215686 0.6039216 0.4627451 0.3450980 0.1882353

, , 2

          [,1]      [,2]      [,3]      [,4]      [,5]
[1,] 0.5882353 0.6666667 0.5098039 0.3803922 0.2156863
[2,] 0.5882353 0.6627451 0.5098039 0.3803922 0.2156863
[3,] 0.5843137 0.6627451 0.5098039 0.3764706 0.2156863
[4,] 0.5843137 0.6627451 0.5058824 0.3764706 0.2117647
[5,] 0.5843137 0.6627451 0.5058824 0.3764706 0.2156863

, , 3

          [,1]      [,2]      [,3]      [,4]      [,5]
[1,] 0.7254902 0.7921569 0.6156863 0.4588235 0.2705882
[2,] 0.7254902 0.7921569 0.6156863 0.4588235 0.2784314
[3,] 0.7254902 0.7921569 0.6156863 0.4588235 0.2784314
[4,] 0.7176471 0.7921569 0.6156863 0.4666667 0.2862745
[5,] 0.7176471 0.7921569 0.6156863 0.4666667 0.2862745

I recommend the biOpspackage for image manipulation.

Here is an example:

library(biOps)
x <- readJpeg(system.file("samples", "violet.jpg", package="biOps"))
plot(x)

r <- imgRedBand(x)
plot(r)
image(x[,,1])

g <- imgGreenBand(x)
plot(g)
image(x[,,2])

b <- imgBlueBand(x)
plot(b)
image(x[,,3])

Visual example:

redPal <- colorRampPalette(c("black", "red"))
greenPal <- colorRampPalette(c("black", "green"))
bluePal <- colorRampPalette(c("black", "blue"))

x11(width=9, height=2.5)
par(mfcol=c(1,3))
image(x=seq(ncol(r)), y=seq(nrow(r)), z=t(r), asp=1, xaxt="n", yaxt="n", bty="n", xlab="", ylab="", main="red channel", col=redPal(256))
image(x=seq(ncol(g)), y=seq(nrow(g)), z=t(g), asp=1, xaxt="n", yaxt="n", bty="n", xlab="", ylab="", main="green channel", col=greenPal(256))
image(x=seq(ncol(b)), y=seq(nrow(b)), z=t(b), asp=1, xaxt="n", yaxt="n", bty="n", xlab="", ylab="", main="blue channel", col=bluePal(256))

I like the approach via R's biOps package. After loading your data into canvas, you're able to convert your jpg file from imagedata to raster and do some further processing. Here's my code:

# Required packages
library(biOps)
library(raster)

# Load and plot data
data(logo)
jpg <- logo

plot.imagedata(jpg)

# Convert imagedata to raster
rst.blue <- raster(jpg[,,1])
rst.green <- raster(jpg[,,2])
rst.red <- raster(jpg[,,3])

# Plot single raster images and RGB composite
plot(stack(rst.blue, rst.green, rst.red), 
     main = c("Blue band", "Green band", "Red band"))
plotRGB(stack(rst.blue, rst.green, rst.red))
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!