问题
indexes = np.array([[0,1,3],[1,2,4 ]])
data = np.random.rand(2,5)
Now, i would like an array of shape (2,3), where
result[0] = data[0,indexes[0]]
result[1] = data[1,indexes[1]]
What would be the proper way to achieve this? A numpy way that yould generalize to bigger arrays (perhaps even higher dimensional).
Please note the difference to questions like this, where the array of indexes contains tuples. This is not what I am asking.
Edit
A more general formulation of the question would be:
- data.shape == (s0, s1, .., sn)
- indexes.shape == (s0, s1, ..., sn-1, K)
- so, they have all dimension but the last equal
Than
result[i, j, ..., k] = data[i, j,...,k, indexes[i, j, ..., k]]
where
len([i, j, ..., k]) == len(data)-1 == len(indexes) - 1
回答1:
Here are NumPy and TensorFlow solutions:
import numpy as np
import tensorflow as tf
def gather_index_np(data, index):
data = np.asarray(data)
index = np.asarray(index)
# Make open grid of all but last dimension indices
grid = np.ogrid[tuple(slice(s) for s in index.shape[:-1])]
# Add extra dimension in grid
grid = [g[..., np.newaxis] for g in grid]
# Complete index
index_full = tuple(grid + [index])
# Index data to get result
result = data[index_full]
return result
def gather_index_tf(data, index):
data = tf.convert_to_tensor(data)
index = tf.convert_to_tensor(index)
index_shape = tf.shape(index)
d = index.shape.ndims
# Make grid of all dimension indices
grid = tf.meshgrid(*(tf.range(index_shape[i]) for i in range(d)), indexing='ij')
# Complete index
index_full = tf.stack(grid[:-1] + [index], axis=-1)
# Index data to get result
result = tf.gather_nd(data, index_full)
return result
Example:
import numpy as np
import tensorflow as tf
data = np.arange(10).reshape((2, 5))
index = np.array([[0, 1, 3], [1, 2, 4]])
print(gather_index_np(data, index))
# [[0 1 3]
# [6 7 9]]
with tf.Session() as sess:
print(sess.run(gather_index_tf(data, index)))
# [[0 1 3]
# [6 7 9]]
回答2:
numpy has take_along_axis which does what you describe plus it also lets you choose the axis.
Example:
>>> a = np.arange(24).reshape(2,3,4)
>>> i = np.random.randint(0,4,(2,3,5))
>>> i
array([[[3, 3, 0, 1, 3],
[3, 1, 0, 3, 3],
[3, 2, 0, 3, 3]],
[[2, 3, 0, 0, 0],
[1, 1, 3, 1, 2],
[1, 3, 0, 0, 2]]])
>>> np.take_along_axis(a, i, -1)
array([[[ 3, 3, 0, 1, 3],
[ 7, 5, 4, 7, 7],
[11, 10, 8, 11, 11]],
[[14, 15, 12, 12, 12],
[17, 17, 19, 17, 18],
[21, 23, 20, 20, 22]]])
来源:https://stackoverflow.com/questions/53652184/array-of-indexes-for-each-element-alongs-the-first-dimension-in-a-2d-array-nump