问题
I have a quantitative dataset from a survey. I want to plot fit triangular distribution for the values I have (minimum lb, maximum ub, and mode ml). Mind you, I am using rtriang() as my data does not contain quantiles to which a density function can be fitted. At least that is my understanding.
This piece of code returns a lot of separate graphs. I want to display the geom_density objects for each i (or respondent) into one graph. How would I achieve this?
scenarios <- c("s1", "s2")
questions <- c("q1", "q2")
respondents <- c("1","2","3")
data_long <- data.frame(id=c("1","2","3", "1","2","3", "1","2","3",
"1","2","3", "1","2","3", "1","2","3",
"1","2","3", "1","2","3", "1","2","3",
"1","2","3", "1","2","3", "1","2","3"),
variable=c("s1_q1_ml", "s1_q1_ml", "s1_q1_ml",
"s1_q1_lb", "s1_q1_lb", "s1_q1_lb",
"s1_q1_ub", "s1_q1_ub", "s1_q1_ub",
"s1_q2_ml", "s1_q2_ml", "s1_q2_ml",
"s1_q2_lb", "s1_q2_lb", "s1_q2_lb",
"s1_q2_ub", "s1_q2_ub", "s1_q2_ub",
"s2_q1_ml", "s2_q1_ml", "s2_q1_ml",
"s2_q1_lb", "s2_q1_lb", "s2_q1_lb",
"s2_q1_ub", "s2_q1_ub", "s2_q1_ub",
"s2_q2_ml", "s2_q2_ml", "s2_q1_ml",
"s2_q2_lb", "s2_q2_lb", "s2_q1_lb",
"s2_q2_ub", "s2_q2_ub", "s2_q1_ub"),
value=c(70, 70, 70, 60, 60, 60, 80, 80, 80,
70, 70, 70, 60, 60, 60, 80, 80, 80,
70, 70, 70, 60, 60, 60, 80, 80, 80,
70, 70, 70, 60, 60, 60, 80, 80, 80))
data_long <- setDT(data_long)
for (i in respondents) {
for (j in scenarios) {
for (k in questions) {
t <- rtriang(n =100000, min=as.numeric(data_long[id==i & variable == paste(j, k, "lb", sep = "_")]$value),
mode=as.numeric(data_long[id==i & variable == paste(j,k, "ml", sep = "_")]$value),
max=as.numeric(data_long[id==i & variable == paste(j,k, "ub", sep = "_")]$value))
# Displaying the samples in a density plot
plot <- ggplot() + geom_density(aes(t)) + xlim(0,100) + xlab("Probability in %")
ggsave(plot,filename=paste(i,j,k,".png",sep="_"))
}
}
}
回答1:
I am not sure if I completely understand. Are you looking for this?
library(tidyverse)
library(mc2d)
temp <- data_long %>%
separate(variable, c("scenarios", "questions", "temp"),sep = "_") %>%
group_split(id) %>%
map(~{
temp <- rtriang(
n =100000,
min = .x %>% filter(temp == 'lb') %>% pull(value),
mode = .x %>% filter(temp == 'ml') %>% pull(value),
max = .x %>% filter(temp == 'ub') %>% pull(value))
ggplot(temp) + geom_density(aes(temp)) +
xlim(0,100) + xlab("Probability in %")
})
Another approach suggested by @Tjebo
temp <- data_long %>%
separate(variable, c("scenarios", "questions", "temp"),sep = "_") %>%
group_split(id) %>%
map_df(~{
data.frame(x = rtriang(n =100000,
min = .x %>% filter(temp == 'lb') %>% pull(value),
mode = .x %>% filter(temp == 'ml') %>% pull(value),
max = .x %>% filter(temp == 'ub') %>% pull(value)))
}, .id = "id")
ggplot(temp) + geom_density(aes(x, color = id)) +
xlim(0,100) + xlab("Probability in %")
来源:https://stackoverflow.com/questions/61457445/combining-multiple-ggplot-geoms-in-a-for-loop