问题
I am working on a problem for predicting a score of how fat cows are, based on images of cows. I applied a CNN to estimate the value which is between 0-5 ( the dataset i have, contains only values between 2.25 and 4 ) I am using 4 CNN layers and 3 Hidden layers.
I actualy have 2 problems : 1/ I got 0.05 training error, but after 3-5 epochs the validation error remains at about 0.33. 2/ The value predicted by my NN are between 2.9 and 3.3 which is too narrow compared with the dataset range. Is it normal ?
How can i improve my model ?
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(512, 424,1)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(input_shape=(512, 424)),
tf.keras.layers.Dense(256, activation=tf.nn.relu),
tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dense(1, activation='linear')
])
Learning Curve:

Prediction:

回答1:
This seems to be the case of Overfitting. You can
ShuffletheData, by usingshuffle=Trueincnn_model.fit. Code is shown below:history = cnn_model.fit(x = X_train_reshaped, y = y_train, batch_size = 512, epochs = epochs, callbacks=[callback], verbose = 1, validation_data = (X_test_reshaped, y_test), validation_steps = 10, steps_per_epoch=steps_per_epoch, shuffle = True)Use
Early Stopping. Code is shown belowcallback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=15)Use Regularization. Code for Regularization is shown below (You can try l1 Regularization or l1_l2 Regularization as well):
from tensorflow.keras.regularizers import l2
Regularizer = l2(0.001)
cnn_model.add(Conv2D(64,3, 3, input_shape = (28,28,1), activation='relu', data_format='channels_last',
activity_regularizer=Regularizer, kernel_regularizer=Regularizer))
cnn_model.add(Dense(units = 10, activation = 'sigmoid',
activity_regularizer=Regularizer, kernel_regularizer=Regularizer))
You can try using
BatchNormalization.Perform Image Data Augmentation using
ImageDataGenerator. Refer this link for more info about that.If the Pixels are not
Normalized, Dividing the Pixel Values with255also helps.Finally, if there still no change, you can try using
Pre-Trained ModelslikeResNetorVGG Net, etc..
来源:https://stackoverflow.com/questions/57061266/how-to-improve-my-cnn-high-and-constant-validation-error