问题
Note: This Quetion is Linked from this Question:Creting UDF function with NonPrimitive Data Type and using in Spark-sql Query: Scala
Hi I have Craeted one method in scala.
package test.udf.demo
object UDF_Class {
def transformDate( dateColumn: String, df: DataFrame) : DataFrame = {
val sparksession = SparkSession.builder().appName("App").getOrCreate()
val d=df.withColumn("calculatedCol", month(to_date(from_unixtime(unix_timestamp(col(dateColumn), "dd-MM-yyyy")))))
df.withColumn("date1", when(col("calculatedCol") === "01", concat(concat(year(to_date(from_unixtime(unix_timestamp(col("calculatedCol"), "dd-MM- yyyy"))))-1, lit('-')),substring(year(to_date(from_unixtime(unix_timestamp(col("calculatedCol")), "dd-MM- yyyy"))),3,4))
.when(col("calculatedCol") === "02",concat(concat(year(to_date(from_unixtime(unix_timestamp(col("calculatedCol"), "dd-MM- yyyy"))))-1, lit('-')),substring(year(to_date(from_unixtime(unix_timestamp(col("calculatedCol")), "dd-MM- yyyy"))),3,4)))
.when(col("calculatedCol") === "03",concat(concat(year(to_date(from_unixtime(unix_timestamp(col("calculatedCol"), "dd-MM- yyyy"))))-1, lit('-')),substring(year(to_date(from_unixtime(unix_timestamp(col("calculatedCol")), "dd-MM-yyyy"))),3,4)))
.otherwise(concat(concat(year(to_date(from_unixtime(unix_timestamp(col("calculatedCol"), "dd-MM- yyyy")))), lit('-')), substring(year(to_date(from_unixtime(unix_timestamp(col("calculatedCol"), "dd-MM-yyyy")))) + 1, 3, 4)))))
val d1=sparksession.udf.register("transform",transformDate _)
d
}
}
I want to use this transformDate method in my sparksql query which is seprate scala code in same packege.
package test.udf.demo
import test.udf.demo.transformDate
//sparksession
sparksession.sql("select id,name,salary,transform(dob) from dbname.tablename")
but this is giving me error "not a temp or permanet registerd function in default database" can someone please guide me.
回答1:
AFAIK Spark user defined udfs can cannot accept or return DataFrame. That is stopping your udf from registration
回答2:
First of all Spark SQL UDF is a Row based function. Not a Dataframe based method. Aggregate UDF also takes a series of Row. So the UDF definition is wrong. If I understood your requirement correctly you want to create a configurable expression of Case statements. It can be easily achieved by expr()
import spark.implicits._
val exprStr = "case when calculatedCol='01' then <here goes your code statements> as FP"
val modifiedDf = sql("""select id,name,salary,$exprStr from dbname.tablename""")
It will work
来源:https://stackoverflow.com/questions/61662077/creating-and-using-spark-hive-udf-for-date