tf.train.slice_input_producer处理的是来源tensor的数据
转载自:https://blog.csdn.net/dcrmg/article/details/79776876 里面有详细参数解释
官方说明

简单使用
import tensorflow as tf
images = ['img1', 'img2', 'img3', 'img4', 'img5']
labels= [1,2,3,4,5]
epoch_num=8
f = tf.train.slice_input_producer([images, labels],num_epochs=None,shuffle=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(epoch_num):
k = sess.run(f)
print (i,k)
coord.request_stop()
coord.join(threads)
运行结果:

用tf.data.Dataset.from_tensor_slices调用,之前的会被抛弃,用法:https://blog.csdn.net/qq_32458499/article/details/78856530
结合批处理
import tensorflow as tf
import numpy as np
# 样本个数
sample_num=5
# 设置迭代次数
epoch_num = 2
# 设置一个批次中包含样本个数
batch_size = 3
# 计算每一轮epoch中含有的batch个数
batch_total = int(sample_num/batch_size)+1
# 生成4个数据和标签
def generate_data(sample_num=sample_num):
labels = np.asarray(range(0, sample_num))
images = np.random.random([sample_num, 224, 224, 3])
print('image size {},label size :{}'.format(images.shape, labels.shape))
return images,labels
def get_batch_data(batch_size=batch_size):
images, label = generate_data()
# 数据类型转换为tf.float32
images = tf.cast(images, tf.float32)
label = tf.cast(label, tf.int32)
#从tensor列表中按顺序或随机抽取一个tensor
input_queue = tf.train.slice_input_producer([images, label], shuffle=False)
image_batch, label_batch = tf.train.batch(input_queue, batch_size=batch_size, num_threads=1, capacity=64)
return image_batch, label_batch
image_batch, label_batch = get_batch_data(batch_size=batch_size)
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess, coord)
try:
for i in range(epoch_num): # 每一轮迭代
print ('************')
for j in range(batch_total): #每一个batch
print ('--------')
# 获取每一个batch中batch_size个样本和标签
image_batch_v, label_batch_v = sess.run([image_batch, label_batch])
# for k in
print(image_batch_v.shape, label_batch_v)
except tf.errors.OutOfRangeError:
print("done")
finally:
coord.request_stop()
coord.join(threads)
运行结果:

来源:https://www.cnblogs.com/helloworld0604/p/10044538.html