题意
分析
就判断两个点集的凸包相离即可。
需要满足如下两个条件:
- 两凸包上任意两条线段不相交。
- 两凸包上任意一点不在另一凸包的内部。
时间复杂度\(O(T n m)\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<ctime>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
rg T data=0;
rg int w=1;
rg char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
{
data=data*10+ch-'0';
ch=getchar();
}
return data*w;
}
template<class T>T read(T&x)
{
return x=read<T>();
}
using namespace std;
typedef long long ll;
co double eps=1e-10;
double dcmp(double x)
{
return fabs(x)<eps?0:(x<0?-1:1);
}
struct Point
{
double x,y;
Point(double x=0,double y=0)
:x(x),y(y){}
bool operator<(co Point&rhs)co
{
return x<rhs.x||(x==rhs.x&&y<rhs.y);
}
bool operator==(co Point&rhs)co
{
return x==rhs.x&&y==rhs.y;
}
};
typedef Point Vector;
Vector operator-(co Vector&A,co Vector&B)
{
return Vector(A.x-B.x,A.y-B.y);
}
double Dot(co Vector&A,co Vector&B)
{
return A.x*B.x+A.y*B.y;
}
double Cross(co Vector&A,co Vector&B)
{
return A.x*B.y-A.y*B.x;
}
bool SegmentProperIntersection(co Point&a1,co Point&a2,co Point&b1,co Point&b2)
{
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
}
bool OnSegment(co Point&p,co Point&a1,co Point&a2)
{
return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<0;
}
vector<Point>ConvexHull(vector<Point>p)
{
sort(p.begin(),p.end());
p.erase(unique(p.begin(),p.end()),p.end());
int n=p.size();
int m=0;
vector<Point>ch(n+1);
for(int i=0;i<n;++i)
{
while(m>1&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)
--m;
ch[m++]=p[i];
}
int k=m;
for(int i=n-2;i>=0;--i)
{
while(m>k&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)
--m;
ch[m++]=p[i];
}
if(n>1)
m--;
ch.resize(m);
return ch;
}
int PointInPolygon(co Point&p,co vector<Point>&poly)
{
int wn=0;
int n=poly.size();
for(int i=0;i<n;++i)
{
co Point&p1=poly[i];
co Point&p2=poly[(i+1)%n];
if(p1==p||p2==p||OnSegment(p,p1,p2))
return -1;
int k=dcmp(Cross(p2-p1,p-p1));
int d1=dcmp(p1.y-p.y);
int d2=dcmp(p2.y-p.y);
if(k>0&&d1<=0&&d2>0)
++wn;
if(k<0&&d2<=0&&d1>0)
--wn;
}
if(wn!=0)
return 1;
return 0;
}
bool ConvexPolygonDisjoint(co vector<Point>ch1,co vector<Point>&ch2)
{
int c1=ch1.size();
int c2=ch2.size();
for(int i=0;i<c1;++i)
if(PointInPolygon(ch1[i],ch2)!=0)
return 0;
for(int i=0;i<c2;++i)
if(PointInPolygon(ch2[i],ch1)!=0)
return 0;
for(int i=0;i<c1;++i)
for(int j=0;j<c2;++j)
if(SegmentProperIntersection(ch1[i],ch1[(i+1)%c1],ch2[j],ch2[(j+1)%c2]))
return 0;
return 1;
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
int n,m;
while(read(n)|read(m))
{
vector<Point>P1,P2;
for(int i=0;i<n;++i)
P1.push_back(Point(read<int>(),read<int>()));
for(int i=0;i<m;++i)
P2.push_back(Point(read<int>(),read<int>()));
if(ConvexPolygonDisjoint(ConvexHull(P1),ConvexHull(P2)))
puts("Yes");
else
puts("No");
}
return 0;
}
来源:https://www.cnblogs.com/autoint/p/10162620.html