其实差不多就是模板集合,如果来得及会加上一些库函数的使用方法……EOJ上已故的10175101282Mercury的Blog里面包含的这里就不重复写了。其实主要都是数论相关。
注意:C++限定。
高精度
//加法(非负)
inline string add(string s1, string s2)
{
string s;
int len1 = s1.size(), len2 = s2.size();
if (len1 < len2)
for (int i = 1; i <= len2-len1; ++i)
s1 = "0" + s1;
else
for (int i = 1; i <= len1-len2; ++i)
s2 = "0" + s2;
len1 = s1.size();
int plus = 0, tmp;
for (int i = len1-1; i >= 0; --i)
{
tmp = s1[i]-'0' + s2[i]-'0' + plus;
plus = tmp / 10;
tmp %= 10;
s = char(tmp+'0') + s;
}
if (plus) s = char(plus+'0') + s;
return s;
}
//减法
inline int cmp(const string& s1, const string& s2)
{
if (s1.size() > s2.size()) return 1;
else if (s1.size() < s2.size()) return -1;
else return s1.compare(s2);
}
inline string subtract(string s1, string s2)
{
string s;
if (!cmp(s1, s2)) return "0";
if (cmp(s1, s2) < 0) {putchar('-'); swap(s1, s2);}
int tmp = s1.size() - s2.size(), minus = 0;
for (int i = s2.size()-1; i >= 0; --i)
{
if (s1[i+tmp] < s2[i]+minus)
{
s = char(s1[i+tmp] - s2[i] - minus + '0'+10) + s;
minus = 1;
} else
{
s = char(s1[i+tmp] - s2[i] - minus + '0') + s;
minus = 0;
}
}
for (int i = tmp-1; i >= 0; --i)
{
if (s1[i] - minus >= '0')
{
s = char(s1[i]-minus) + s;
minus = 0;
} else
{
s = char(s1[i] - minus + 10) + s;
minus = 1;
}
}
s.erase(0, s.find_first_not_of('0'));
return s;
}
//乘法(非负)(需要前面的add)
inline string mul(string s1, string s2)
{
string s, stmp;
int len1 = s1.size(), len2 = s2.size();
for (int i = len2-1; i >= 0; --i)
{
stmp = "";
int tmp = s2[i]-'0', plus = 0, t = 0;
if (tmp)
{
for (int j = 1; j <= len2-i-1; ++j)
stmp += "0";
for (int j = len1-1; j >= 0; --j)
{
t = (tmp*(s1[j]-'0') + plus) % 10;
plus = (tmp*(s1[j]-'0') + plus) / 10;
stmp = char(t+'0') + stmp;
}
if (plus) stmp = char(plus+'0') + stmp;
}
s = add(s, stmp);
}
s.erase(0, s.find_first_not_of('0'));
if (s.empty()) s = "0";
return s;
}
//阶乘
void fact(int n)
{
int result[10005];
memset(result, 0, sizeof(result));
result[0] = 1;
for (int i = 2; i <= n; ++i)
{
int left = 0;
for (int j = 0; j < 10000; ++j)
{
result[j] = left + result[j] * i;
left = result[j] / 10;
result[j] %= 10;
}
}
int k = 9999;
while (!result[k])
k--;
for (int i = k; i >= 0; --i)
printf("%d", result[i]);
printf("\n");
}
除法比较特殊,单独拿出来(非负,需要前面的subtract和mul,除数不能为0):
inline void div(string s1, string s2, string& quot, string& rem)
{
quot = rem = "";
if (s1 == "0")
{
quot = rem = "0";
return;
}
int comp = cmp(s1, s2);
if (comp < 0)
{
quot = "0";
rem = s1;
return;
}else if (!comp)
{
quot = "1";
rem = "0";
return;
} else
{
int len1 = s1.size(), len2 = s2.size();
string stmp;
stmp.append(s1, 0, len2-1);
for (int i = len2-1; i < len1; ++i)
{
stmp += s1[i];
stmp.erase(0, stmp.find_first_not_of('0'));
if (stmp.empty()) stmp = "0";
for (char c = '9' ; c >= '0'; --c)
{
string s, tmp;
s += c;
tmp = mul(s2, s);
if (cmp(tmp, stmp) <= 0)
{
quot += c;
stmp = subtract(stmp, tmp);
break;
}
}
}
rem = stmp;
}
quot.erase(0, quot.find_first_not_of('0'));
if (quot.empty()) quot = "0";
}
大整数类
struct BigInteger
{
static const int BASE = 1e8;
static const int WIDTH = 8;
vector<int> s;
BigInteger(long long num = 0) { *this = num; }
BigInteger operator = (long long);
BigInteger operator = (const string&);
BigInteger operator + (const BigInteger&) const;
BigInteger operator - (const BigInteger&) const;
BigInteger operator * (const BigInteger&) const;
BigInteger operator / (const BigInteger&) const;
BigInteger operator += (const BigInteger&);
BigInteger operator -= (const BigInteger&);
BigInteger operator *= (const BigInteger&);
BigInteger operator /= (const BigInteger&);
bool operator < (const BigInteger&) const;
bool operator > (const BigInteger&) const;
bool operator <= (const BigInteger&) const;
bool operator >= (const BigInteger&) const;
bool operator != (const BigInteger&) const;
bool operator == (const BigInteger&) const;
};
BigInteger BigInteger::operator = (long long num) //重载=运算符(数字赋值)
{
s.clear();
do
{
s.push_back(num%BASE);
num /= BASE;
}while (num > 0);
return *this;
}
BigInteger BigInteger::operator = (const string& str) //重载=运算符(字符串赋值)
{
s.clear();
int x, len = (str.length() - 1) / WIDTH + 1;
for (int i = 0; i < len; ++i)
{
int end = str.length() - i * WIDTH;
int start = max(0, end-WIDTH);
sscanf(str.substr(start, end-start).c_str(), "%d", &x);
s.push_back(x);
}
return *this;
}
BigInteger BigInteger::operator + (const BigInteger& b) const //重载+运算符
{
BigInteger c;
c.s.clear();
for (int i = 0, g = 0; ; ++i)
{
if (!g && i >= s.size() && i >= b.s.size())
break;
int x = g;
if (i < s.size())
x += s[i];
if (i < b.s.size())
x += b.s[i];
c.s.push_back(x%BASE);
g = x / BASE;
}
return c;
}
BigInteger BigInteger::operator += (const BigInteger& b) //重载+=运算符
{
*this = *this + b;
return *this;
}
bool BigInteger::operator < (const BigInteger& b) const //重载<运算符
{
if (s.size() != b.s.size())
return s.size() < b.s.size();
for (int i = s.size()-1; i >= 0; --i)
if (s[i] != b.s[i])
return s[i] < b.s[i];
return false;
}
bool BigInteger::operator > (const BigInteger& b) const //重载>运算符
{
return b < *this;
}
bool BigInteger::operator <= (const BigInteger& b) const //重载<=运算符
{
return !(b < *this);
}
bool BigInteger::operator >= (const BigInteger& b) const //重载>=运算符
{
return !(*this < b);
}
bool BigInteger::operator != (const BigInteger& b) const //重载!=运算符
{
return b < *this || *this < b;
}
bool BigInteger::operator == (const BigInteger& b) const //重载==运算符
{
return !(b < *this) || !(*this < b);
}
ostream& operator << (ostream& out, const BigInteger& x) //重载<<运算符
{
out << x.s.back();
for (int i = x.s.size()-2; i >= 0; --i)
{
char buf[20];
sprintf(buf, "%08d", x.s[i]);
for (int j = 0; j < strlen(buf); ++j)
out << buf[j];
}
return out;
}
istream& operator >> (istream& in, BigInteger& x) //重载>>运算符
{
string s;
if (!(in >> s))
return in;
x = s;
return in;
}
快速幂取模
typedef long long ll;
ll pow_mod(int a, int b, int p)
{
ll ret = 1;
while (b)
{
if (b&1) ret = (ret * a) % p;
a = (a * a) % p;
b >>= 1;
}
return ret;
}
扩展欧几里得
int extgcd(int a, int b, int &x, int &y)
{
if (!b)
{
x = 1; y = 0;
return a;
}
int d = extgcd(b, a % b, x, y);
int t = x;
x = y;
y = t - a / b * y;
return d;
}
素数相关
//欧拉筛
const int maxn = 1e7+5;
bool np[maxn]{true,true};
vector<int> prime;
int main()
{
int n, m, x;
cin >> n >> m;
for (int i = 2; i <= n; ++i)
{
if (!np[i]) prime.push_back(i);
for (int j = 0; j < prime.size() && i*prime[j] <= n; ++j)
{
np[i*prime[j]] = true;
if (i % prime[j] == 0) break;
}
}
for (int i = 1; i <= m; ++i)
{
scanf("%d", &x);
printf("%s\n", np[x] ? "No" : "Yes");
}
return 0;
}
//埃氏筛
const int maxn = 1e6+5;
bool np[maxn]{true, true};
void init()
{
for (int i = 2; i < maxn; i++)
if (!np[i])
{
if (i > maxn/i) continue; //或用ll省去这一步
for (int j = i*i; j < maxn; j += i)
np[j] = true;
}
}
//单独判断 O(sqrt(n))
typedef long long ll;
inline bool isprime(ll m)
{
for (ll i = 2; i * i <= m; ++i)
if (!(m % i)) return false;
return true;
}
//区间筛
typedef long long ll;
const int maxn = 1e6+5;
ll a, b;
bool isp[maxn], ispsmall[maxn];
void seg_sieve()
{
for (ll i = 2; i*i <= b; ++i) ispsmall[i] = true;
for (ll i = 0; i <= b-a; ++i) isp[i] = true;
for (ll i = 2; i*i <= b; ++i)
if (ispsmall[i])
{
for (ll j = (i<<1); j*j <= b; j += i) ispsmall[j] = false;
for (ll j = max(2LL, (a+i-1)/i) * i; j <= b; j += i) isp[j-a] = false;
}
if (a <= 1) isp[1-a] = false;
bool flag = false;
for (ll i = 0; i <= b-a; ++i)
if (isp[i])
{
if (flag) printf(" %lld", i+a);
else flag = true, printf("%lld", i+a);
}
flag ? puts("") : puts("no prime number.");
}
约瑟夫
int n, m;
vector<int> v;
int main()
{
cin >> n >> m;
if (!n && !m) return 0;
for (int i = 1; i <= n; ++i)
v.push_back(i);
int kill = 0;
while (v.size() > 1)
{
kill = (kill+m-1) % v.size();
printf("%d ", v[kill]);
v.erase(v.begin()+kill);
}
printf("%d\n", v[0]);
return 0;
}
组合数计算
typedef long long ll;
ll C[41][41];
void calc()
{
C[1][0] = C[1][1] = 1;
for(int i = 2; i <= 40; ++i)
{
C[i][0] = 1;
for(int j = 1; j <= i; ++j)
C[i][j] = C[i-1][j] + C[i-1][j-1];
}
}
LIS(nlogn)
fill(f, f+n, INF);
for (int i = 0; i < n; ++i)
*lower_bound(f, f+n, a[i]) = a[i];
printf("%d\n", lower_bound(f, f+n, INF) - f);
闰年判断
bool is_leap(int n)
{
return ((n % 4 == 0 && n % 100)|| n % 400 == 0) ? 1 : 0;
}
输出给定日期是星期几
int main()
{
int y, m, d;
scanf("%d-%d-%d", &y, &m, &d);
if (m == 1 || m == 2){
--y;
m += 12;
}
int c = y / 100;
int yy = y - c * 100;
int day = yy + yy / 4 + c / 4 - 2 * c + 13 * (m + 1) / 5 + d - 1;
if (y <= 1582 && m <= 10 && d <= 4) day += 3;
while (day < 0) day += 7;
day %= 7;
switch(day){
case 1: printf("Monday\n");break;
case 2: printf("Tuesday\n");break;
case 3: printf("Wednesday\n");break;
case 4: printf("Thursday\n");break;
case 5: printf("Friday\n");break;
case 6: printf("Saturday\n");break;
default: printf("Sunday\n");
}
return 0;
}
一些巧算方法
//n!低位0的个数
int main()
{
int t,i,n,m,z;
scanf("%d", &t);
for (i = 0; i < t; i++){
scanf("%d", &n);
m = 5;z = 0;
while (n >= m){
z += n / m;
m *= 5;
}
printf("case #%d:\n%d\n", i, z);
}
return 0;
}
//n!最高位
int main()
{
int n,fn;
double log_n_fac;
while (scanf("%d", &n) != EOF){
log_n_fac = 0.5 * log10(2 * PI *(double)n) + (double)n * log10((double)n / E);
log_n_fac -=(int)log_n_fac;
fn = pow(10, log_n_fac);//Stirling's approximation
switch(n){
case 0:printf("1\n");break;
case 1:printf("1\n");break;
case 2:printf("2\n");break;
case 3:printf("6\n");break;
case 7:printf("5\n");break;
case 8:printf("4\n");break;
default:printf("%d\n", fn);
}
}
return 0;
}
//n^n最高位
int main()
{
int n;
scanf("%d",&n);
while(n != 0){
printf("%d\n",(int)pow(10,n*log10(n)-(int)(n*log10(n))));
scanf("%d",&n);
}
return 0;
}
质因子分解
int n;
void solve(){
int i;
int m = n;
for (i = 2; i <= n; i++){
int cnt = 0;
if (m % i) continue;
while (m % i == 0){
m /= i;
cnt++;
}
printf("(%d,%d)", i, cnt);
if (m == 1) break;
}
printf("\n");
}
最长回文子串
//中心扩展法
string expand(string s, int c1, int c2) {
int l = c1, r = c2;
int n = s.size();
while (l >= 0 && r <= n-1 && s[l] == s[r])
l--, r++;
return s.substr(l+1, r-l-1);
}
string lps(string s) {
int n = s.size();
if (!n) return "";
string lungo = s.substr(0, 1);
for (int i = 0; i < n-1; i++) {
string p1 = expand(s, i, i);
if (p1.size() > lungo.size())
lungo = p1;
string p2 = expand(s, i, i+1);
if (p2.size() > lungo.size())
lungo = p2;
}
return lungo;
}
最大区间和
ans = a[0];
for (i = 0; i < n; ++i){
if (tot > 0) tot += a[i];
else tot = a[i];
ans = (tot>ans)?tot:ans;
}
小型分数模板
struct frac
{
ll nume, deno;
ll gcd(ll a, ll b)
{
a = abs(a); b = abs(b);
return b ? gcd(b, a % b) : a;
}
void reduct()
{
if(!nume) {
deno = 1;
return;
}
ll g = gcd(nume, deno);
nume /= g; deno /= g;
return;
}
frac(ll a, ll b = 1)
{
nume = a; deno = b;
(*this).reduct();
}
void print()
{
if(deno == 1) printf("%lld\n", nume);
else printf("%lld/%lld\n", nume, deno);
}
};
frac operator+(const frac& a, const frac& b)
{
frac ret(a.nume*b.deno + b.nume*a.deno, a.deno*b.deno);
ret.reduct();
return ret;
}
简单DP
//01背包
for (i = 0; i < n; ++i)
for (j = m; j >= w[i]; --j)
dp[j] = max(dp[j], dp[j-w[i]] + c[i]);
//最大上升子序列和(n^2)
for (i = 0; i < n; ++i)
dp[i] = a[i];
nowmax = a[0];
for (i = 0; i < n; ++i)
for (int j = 0; j < i; ++j)
if (a[j] < a[i])
{
dp[i] = max(dp[i], dp[j] + a[i]);
nowmax = max(nowmax, dp[i]);
}
//整数拆分
for (i = 1; i <= n; ++i)
for (j = 2; j <= n; ++j)
{
dp[i][j] = dp[i][j - 1];
if (i == j) ++dp[i][j];
else if(i > j) dp[i][j] += dp[i - j][j];
}
//拆成2的幂和
for (int i = 3; i <= 1000000; ++i)
{
if (i & 1) dp[i] = dp[i-1] % mod;
else dp[i] = (dp[i-2] + dp[i>>1]) % mod;
}
//拆成不重复正整数
dp[0] = 1;
for (int i = 1; i <= m; ++i)
for (int j = n; j >= i; --j)
dp[j] += dp[j-i];
//数塔(和最小)
for (i = n-1; i >= 0; --i)
for (j = 0; j <= i; ++j)
dp[j] = min(dp[j], dp[j+1]) + a[i][j];
//数塔(和的个位数最大)
for (i = 0; i < n; ++i)
dp[n-1][i][a[n-1][i] % 10] = 1;
for (i = n-2; i >= 0; --i)
for (j = 0; j <= i; ++j)
for (k = 0; k < 10; ++k)
if (dp[i+1][j][k] || dp[i+1][j+1][k])
dp[i][j][(k + a[i][j]) % 10] = 1;
for (i = 9; i >= 0; --i)
if (dp[0][0][i]){printf("%d\n", i); break;}
//装箱问题(dp)
for (i = 0; i < n; ++i)
{
scanf("%d", &w);
for (j = m; j >= w; --j)
dp[j] = max(dp[j], dp[j-w] + w);
}
//装箱问题(搜索)
void dfs(int cnt, int now)
{
if (now > v) return;
if (cnt == n + 1){
if (now > max) max = now;
return;
}
dfs(cnt + 1, now);
dfs(cnt + 1, now + a[cnt]);
}
十六进制加法
const int N = 233;
struct bigNum{
int a[N];
bigNum(){
memset(a,sizeof(a),0);
for (int i=0;i<N;i++)a[i] = 0;
}
void print(){
for (int i = a[0]; i>0; i--){
printf("%X",a[i]);
}
puts("");
}
bigNum operator + (const bigNum &b){
bigNum c;
c.a[0] = max(a[0], b.a[0]);
int x = 0;
for (int i=1;i<=c.a[0];i++){
//printf("b[i] = %d", b.a[i]);
x += a[i] + b.a[i];
c.a[i] = x % 16;
x /= 16;
}
if (x) c.a[++c.a[0]] = x;
return c;
}
}a, b;
int qd(char x){
if ('0' <= x && x <= '9')return x - '0';
return x - 55;
}
bigNum jd(string st){
bigNum ans;
ans.a[0] = st.length();
for (int i=1; i <= ans.a[0]; i++){
ans.a[i] = qd(st[ans.a[0] - i]);
}
return ans;
}
int main(){
int T;scanf("%d", &T);
string st1, st2;
for (int cas = 0;cas < T;cas++){
printf("case #%d:\n", cas);
cin >> st1 >> st2;
a = jd(st1);
b = jd(st2);
bigNum c = a + b;
c.print();
}
return 0;
}
另外放一些EOJ上具有代表性的题,遇到类似的直接看提交记录就可以了:
- 区间筛法——49
- 埃氏筛因子——3469
- 谦虚数/丑数类似——1277
- 查单词——3018
- 多项式处理——2,2845
- KMP——3441
- 乱搞输出图形——2983
- 约瑟夫——1849,1982,3030
- 分数相关——3041,2980,2972
- 基础的大法师(雾)/剪枝/前缀和等等——3490
- 内存相关——2822
- floodfill——2848
部分库函数
int isgraph(int ch) 是否是可打印字符(不含空格)
int isprint(int ch) 是否是可打印字符(含空格)
int ispunct(int ch)
double atan2(double y, double x) y/x的反正切(弧度)
int atoi(char *nptr)
double strtod(char *str)
int sscanf(char str, char *format) 通过str格式化赋值
char strcpy(char* dest, char* src)
char strcat(char* dest, char* src)
char strchr(const char *s1, int c)
int strcmp(const char* s1, const char* s2) 返回s1-s2
int strncmp(const char* s1, const char* s2, size_t maxlen)
char strrev(char *s)
char strstr(const char* s1, const char* s2) s2中第一次出现s1的位置
string s(cstr[, chars_len]);
string s(num, c);
{
string s(“abcd”);
s.compare(“abcd”); //0
s.compare(“dcba”); //<0
s.compare(“ab”); //>0
s.compare(0,2,s,2,2); //比较ab和cd <0
}
s.assign(“nico”,5);//’n’’i’’c’’o’’\0’
s.insert(1,str);//插入到索引前
s.replace(1,2,”nternationalizatio”);//从1开始的2个s.erase(13);//从13开始往后全删除
s.erase(7,5);//从7开始往后删5个
string::find系列:
1. 搜索对象
2. [起点索引]
3. [搜索字符个数]
来源:oschina
链接:https://my.oschina.net/u/4267707/blog/3209831