pandas和csv使用最为频繁,保存数据集时尽量使用csv存储,而不是txt
对于训练集中的数据,content,labels,将原始的list封装成dict,直接转换为dataFrame
data = pd.DataFrame({"samples":content, "labels":labels})
def generate_data(random_state = 24, is_pse_label=True):
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=random_state)
i = 0
for train_index, dev_index in skf.split(X, y):
print(i, "TRAIN:", train_index, "TEST:", dev_index)
DATA_DIR = "./data_StratifiedKFold_{}/data_origin_{}/".format(random_state,i)
if not os.path.exists(DATA_DIR):
os.makedirs(DATA_DIR)
tmp_train_df = train_df.iloc[train_index]
tmp_dev_df = train_df.iloc[dev_index]
test_df.to_csv(DATA_DIR+"test.csv")
if is_pse_label:
pse_dir = "data_pse_{}/".format(i)
pse_df = pd.read_csv(pse_dir+'train.csv')
tmp_train_df = pd.concat([tmp_train_df, pse_df],ignore_index=True,sort=False)
tmp_train_df.to_csv(DATA_DIR + "train.csv")
tmp_dev_df.to_csv(DATA_DIR+"dev.csv")
print(tmp_train_df.shape, tmp_dev_df.shape)
i+=1
来源:https://www.cnblogs.com/demo-deng/p/12517771.html