概要
前面分别介绍了红黑树的理论知识 以及 通过C语言实现了红黑树。本章继续会红黑树进行介绍,下面将Linux 内核中的红黑树单独移植出来进行测试验证。若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章。
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3624202.html
更多内容:数据结构与算法系列 目录
(01) 红黑树(一)之 原理和算法详细介绍
(02) 红黑树(二)之 C语言的实现
(03) 红黑树(三)之 Linux内核中红黑树的经典实现
(04) 红黑树(四)之 C++的实现
(05) 红黑树(五)之 Java的实现
(06) 红黑树(六)之 参考资料
Linux内核中红黑树(完整源码)
红黑树的实现文件(rbtree.h)

1 /*
2 Red Black Trees
3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
19 linux/include/linux/rbtree.h
20
21 To use rbtrees you'll have to implement your own insert and search cores.
22 This will avoid us to use callbacks and to drop drammatically performances.
23 I know it's not the cleaner way, but in C (not in C++) to get
24 performances and genericity...
25
26 Some example of insert and search follows here. The search is a plain
27 normal search over an ordered tree. The insert instead must be implemented
28 in two steps: First, the code must insert the element in order as a red leaf
29 in the tree, and then the support library function rb_insert_color() must
30 be called. Such function will do the not trivial work to rebalance the
31 rbtree, if necessary.
32
33 -----------------------------------------------------------------------
34 static inline struct page * rb_search_page_cache(struct inode * inode,
35 unsigned long offset)
36 {
37 struct rb_node * n = inode->i_rb_page_cache.rb_node;
38 struct page * page;
39
40 while (n)
41 {
42 page = rb_entry(n, struct page, rb_page_cache);
43
44 if (offset < page->offset)
45 n = n->rb_left;
46 else if (offset > page->offset)
47 n = n->rb_right;
48 else
49 return page;
50 }
51 return NULL;
52 }
53
54 static inline struct page * __rb_insert_page_cache(struct inode * inode,
55 unsigned long offset,
56 struct rb_node * node)
57 {
58 struct rb_node ** p = &inode->i_rb_page_cache.rb_node;
59 struct rb_node * parent = NULL;
60 struct page * page;
61
62 while (*p)
63 {
64 parent = *p;
65 page = rb_entry(parent, struct page, rb_page_cache);
66
67 if (offset < page->offset)
68 p = &(*p)->rb_left;
69 else if (offset > page->offset)
70 p = &(*p)->rb_right;
71 else
72 return page;
73 }
74
75 rb_link_node(node, parent, p);
76
77 return NULL;
78 }
79
80 static inline struct page * rb_insert_page_cache(struct inode * inode,
81 unsigned long offset,
82 struct rb_node * node)
83 {
84 struct page * ret;
85 if ((ret = __rb_insert_page_cache(inode, offset, node)))
86 goto out;
87 rb_insert_color(node, &inode->i_rb_page_cache);
88 out:
89 return ret;
90 }
91 -----------------------------------------------------------------------
92 */
93
94 #ifndef _SLINUX_RBTREE_H
95 #define _SLINUX_RBTREE_H
96
97 #include <stdio.h>
98 //#include <linux/kernel.h>
99 //#include <linux/stddef.h>
100
101 struct rb_node
102 {
103 unsigned long rb_parent_color;
104 #define RB_RED 0
105 #define RB_BLACK 1
106 struct rb_node *rb_right;
107 struct rb_node *rb_left;
108 } /* __attribute__((aligned(sizeof(long))))*/;
109 /* The alignment might seem pointless, but allegedly CRIS needs it */
110
111 struct rb_root
112 {
113 struct rb_node *rb_node;
114 };
115
116
117 #define rb_parent(r) ((struct rb_node *)((r)->rb_parent_color & ~3))
118 #define rb_color(r) ((r)->rb_parent_color & 1)
119 #define rb_is_red(r) (!rb_color(r))
120 #define rb_is_black(r) rb_color(r)
121 #define rb_set_red(r) do { (r)->rb_parent_color &= ~1; } while (0)
122 #define rb_set_black(r) do { (r)->rb_parent_color |= 1; } while (0)
123
124 static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
125 {
126 rb->rb_parent_color = (rb->rb_parent_color & 3) | (unsigned long)p;
127 }
128 static inline void rb_set_color(struct rb_node *rb, int color)
129 {
130 rb->rb_parent_color = (rb->rb_parent_color & ~1) | color;
131 }
132
133 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
134
135 #define container_of(ptr, type, member) ({ \
136 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
137 (type *)( (char *)__mptr - offsetof(type,member) );})
138
139 #define RB_ROOT (struct rb_root) { NULL, }
140 #define rb_entry(ptr, type, member) container_of(ptr, type, member)
141
142 #define RB_EMPTY_ROOT(root) ((root)->rb_node == NULL)
143 #define RB_EMPTY_NODE(node) (rb_parent(node) == node)
144 #define RB_CLEAR_NODE(node) (rb_set_parent(node, node))
145
146 static inline void rb_init_node(struct rb_node *rb)
147 {
148 rb->rb_parent_color = 0;
149 rb->rb_right = NULL;
150 rb->rb_left = NULL;
151 RB_CLEAR_NODE(rb);
152 }
153
154 extern void rb_insert_color(struct rb_node *, struct rb_root *);
155 extern void rb_erase(struct rb_node *, struct rb_root *);
156
157 typedef void (*rb_augment_f)(struct rb_node *node, void *data);
158
159 extern void rb_augment_insert(struct rb_node *node,
160 rb_augment_f func, void *data);
161 extern struct rb_node *rb_augment_erase_begin(struct rb_node *node);
162 extern void rb_augment_erase_end(struct rb_node *node,
163 rb_augment_f func, void *data);
164
165 /* Find logical next and previous nodes in a tree */
166 extern struct rb_node *rb_next(const struct rb_node *);
167 extern struct rb_node *rb_prev(const struct rb_node *);
168 extern struct rb_node *rb_first(const struct rb_root *);
169 extern struct rb_node *rb_last(const struct rb_root *);
170
171 /* Fast replacement of a single node without remove/rebalance/add/rebalance */
172 extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
173 struct rb_root *root);
174
175 static inline void rb_link_node(struct rb_node * node, struct rb_node * parent,
176 struct rb_node ** rb_link)
177 {
178 node->rb_parent_color = (unsigned long )parent;
179 node->rb_left = node->rb_right = NULL;
180
181 *rb_link = node;
182 }
183
184 #endif /* _LINUX_RBTREE_H */
红黑树的实现文件(rbtree.c)

1 /*
2 Red Black Trees
3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19
20 linux/lib/rbtree.c
21 */
22
23 #include "rbtree.h"
24
25 static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)
26 {
27 struct rb_node *right = node->rb_right;
28 struct rb_node *parent = rb_parent(node);
29
30 if ((node->rb_right = right->rb_left))
31 rb_set_parent(right->rb_left, node);
32 right->rb_left = node;
33
34 rb_set_parent(right, parent);
35
36 if (parent)
37 {
38 if (node == parent->rb_left)
39 parent->rb_left = right;
40 else
41 parent->rb_right = right;
42 }
43 else
44 root->rb_node = right;
45 rb_set_parent(node, right);
46 }
47
48 static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)
49 {
50 struct rb_node *left = node->rb_left;
51 struct rb_node *parent = rb_parent(node);
52
53 if ((node->rb_left = left->rb_right))
54 rb_set_parent(left->rb_right, node);
55 left->rb_right = node;
56
57 rb_set_parent(left, parent);
58
59 if (parent)
60 {
61 if (node == parent->rb_right)
62 parent->rb_right = left;
63 else
64 parent->rb_left = left;
65 }
66 else
67 root->rb_node = left;
68 rb_set_parent(node, left);
69 }
70
71 void rb_insert_color(struct rb_node *node, struct rb_root *root)
72 {
73 struct rb_node *parent, *gparent;
74
75 while ((parent = rb_parent(node)) && rb_is_red(parent))
76 {
77 gparent = rb_parent(parent);
78
79 if (parent == gparent->rb_left)
80 {
81 {
82 register struct rb_node *uncle = gparent->rb_right;
83 if (uncle && rb_is_red(uncle))
84 {
85 rb_set_black(uncle);
86 rb_set_black(parent);
87 rb_set_red(gparent);
88 node = gparent;
89 continue;
90 }
91 }
92
93 if (parent->rb_right == node)
94 {
95 register struct rb_node *tmp;
96 __rb_rotate_left(parent, root);
97 tmp = parent;
98 parent = node;
99 node = tmp;
100 }
101
102 rb_set_black(parent);
103 rb_set_red(gparent);
104 __rb_rotate_right(gparent, root);
105 } else {
106 {
107 register struct rb_node *uncle = gparent->rb_left;
108 if (uncle && rb_is_red(uncle))
109 {
110 rb_set_black(uncle);
111 rb_set_black(parent);
112 rb_set_red(gparent);
113 node = gparent;
114 continue;
115 }
116 }
117
118 if (parent->rb_left == node)
119 {
120 register struct rb_node *tmp;
121 __rb_rotate_right(parent, root);
122 tmp = parent;
123 parent = node;
124 node = tmp;
125 }
126
127 rb_set_black(parent);
128 rb_set_red(gparent);
129 __rb_rotate_left(gparent, root);
130 }
131 }
132
133 rb_set_black(root->rb_node);
134 }
135
136 static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
137 struct rb_root *root)
138 {
139 struct rb_node *other;
140
141 while ((!node || rb_is_black(node)) && node != root->rb_node)
142 {
143 if (parent->rb_left == node)
144 {
145 other = parent->rb_right;
146 if (rb_is_red(other))
147 {
148 rb_set_black(other);
149 rb_set_red(parent);
150 __rb_rotate_left(parent, root);
151 other = parent->rb_right;
152 }
153 if ((!other->rb_left || rb_is_black(other->rb_left)) &&
154 (!other->rb_right || rb_is_black(other->rb_right)))
155 {
156 rb_set_red(other);
157 node = parent;
158 parent = rb_parent(node);
159 }
160 else
161 {
162 if (!other->rb_right || rb_is_black(other->rb_right))
163 {
164 rb_set_black(other->rb_left);
165 rb_set_red(other);
166 __rb_rotate_right(other, root);
167 other = parent->rb_right;
168 }
169 rb_set_color(other, rb_color(parent));
170 rb_set_black(parent);
171 rb_set_black(other->rb_right);
172 __rb_rotate_left(parent, root);
173 node = root->rb_node;
174 break;
175 }
176 }
177 else
178 {
179 other = parent->rb_left;
180 if (rb_is_red(other))
181 {
182 rb_set_black(other);
183 rb_set_red(parent);
184 __rb_rotate_right(parent, root);
185 other = parent->rb_left;
186 }
187 if ((!other->rb_left || rb_is_black(other->rb_left)) &&
188 (!other->rb_right || rb_is_black(other->rb_right)))
189 {
190 rb_set_red(other);
191 node = parent;
192 parent = rb_parent(node);
193 }
194 else
195 {
196 if (!other->rb_left || rb_is_black(other->rb_left))
197 {
198 rb_set_black(other->rb_right);
199 rb_set_red(other);
200 __rb_rotate_left(other, root);
201 other = parent->rb_left;
202 }
203 rb_set_color(other, rb_color(parent));
204 rb_set_black(parent);
205 rb_set_black(other->rb_left);
206 __rb_rotate_right(parent, root);
207 node = root->rb_node;
208 break;
209 }
210 }
211 }
212 if (node)
213 rb_set_black(node);
214 }
215
216 void rb_erase(struct rb_node *node, struct rb_root *root)
217 {
218 struct rb_node *child, *parent;
219 int color;
220
221 if (!node->rb_left)
222 child = node->rb_right;
223 else if (!node->rb_right)
224 child = node->rb_left;
225 else
226 {
227 struct rb_node *old = node, *left;
228
229 node = node->rb_right;
230 while ((left = node->rb_left) != NULL)
231 node = left;
232
233 if (rb_parent(old)) {
234 if (rb_parent(old)->rb_left == old)
235 rb_parent(old)->rb_left = node;
236 else
237 rb_parent(old)->rb_right = node;
238 } else
239 root->rb_node = node;
240
241 child = node->rb_right;
242 parent = rb_parent(node);
243 color = rb_color(node);
244
245 if (parent == old) {
246 parent = node;
247 } else {
248 if (child)
249 rb_set_parent(child, parent);
250 parent->rb_left = child;
251
252 node->rb_right = old->rb_right;
253 rb_set_parent(old->rb_right, node);
254 }
255
256 node->rb_parent_color = old->rb_parent_color;
257 node->rb_left = old->rb_left;
258 rb_set_parent(old->rb_left, node);
259
260 goto color;
261 }
262
263 parent = rb_parent(node);
264 color = rb_color(node);
265
266 if (child)
267 rb_set_parent(child, parent);
268 if (parent)
269 {
270 if (parent->rb_left == node)
271 parent->rb_left = child;
272 else
273 parent->rb_right = child;
274 }
275 else
276 root->rb_node = child;
277
278 color:
279 if (color == RB_BLACK)
280 __rb_erase_color(child, parent, root);
281 }
282
283 static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
284 {
285 struct rb_node *parent;
286
287 up:
288 func(node, data);
289 parent = rb_parent(node);
290 if (!parent)
291 return;
292
293 if (node == parent->rb_left && parent->rb_right)
294 func(parent->rb_right, data);
295 else if (parent->rb_left)
296 func(parent->rb_left, data);
297
298 node = parent;
299 goto up;
300 }
301
302 /*
303 * after inserting @node into the tree, update the tree to account for
304 * both the new entry and any damage done by rebalance
305 */
306 void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
307 {
308 if (node->rb_left)
309 node = node->rb_left;
310 else if (node->rb_right)
311 node = node->rb_right;
312
313 rb_augment_path(node, func, data);
314 }
315
316 /*
317 * before removing the node, find the deepest node on the rebalance path
318 * that will still be there after @node gets removed
319 */
320 struct rb_node *rb_augment_erase_begin(struct rb_node *node)
321 {
322 struct rb_node *deepest;
323
324 if (!node->rb_right && !node->rb_left)
325 deepest = rb_parent(node);
326 else if (!node->rb_right)
327 deepest = node->rb_left;
328 else if (!node->rb_left)
329 deepest = node->rb_right;
330 else {
331 deepest = rb_next(node);
332 if (deepest->rb_right)
333 deepest = deepest->rb_right;
334 else if (rb_parent(deepest) != node)
335 deepest = rb_parent(deepest);
336 }
337
338 return deepest;
339 }
340
341 /*
342 * after removal, update the tree to account for the removed entry
343 * and any rebalance damage.
344 */
345 void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
346 {
347 if (node)
348 rb_augment_path(node, func, data);
349 }
350
351 /*
352 * This function returns the first node (in sort order) of the tree.
353 */
354 struct rb_node *rb_first(const struct rb_root *root)
355 {
356 struct rb_node *n;
357
358 n = root->rb_node;
359 if (!n)
360 return NULL;
361 while (n->rb_left)
362 n = n->rb_left;
363 return n;
364 }
365
366 struct rb_node *rb_last(const struct rb_root *root)
367 {
368 struct rb_node *n;
369
370 n = root->rb_node;
371 if (!n)
372 return NULL;
373 while (n->rb_right)
374 n = n->rb_right;
375 return n;
376 }
377
378 struct rb_node *rb_next(const struct rb_node *node)
379 {
380 struct rb_node *parent;
381
382 if (rb_parent(node) == node)
383 return NULL;
384
385 /* If we have a right-hand child, go down and then left as far
386 as we can. */
387 if (node->rb_right) {
388 node = node->rb_right;
389 while (node->rb_left)
390 node=node->rb_left;
391 return (struct rb_node *)node;
392 }
393
394 /* No right-hand children. Everything down and left is
395 smaller than us, so any 'next' node must be in the general
396 direction of our parent. Go up the tree; any time the
397 ancestor is a right-hand child of its parent, keep going
398 up. First time it's a left-hand child of its parent, said
399 parent is our 'next' node. */
400 while ((parent = rb_parent(node)) && node == parent->rb_right)
401 node = parent;
402
403 return parent;
404 }
405
406 struct rb_node *rb_prev(const struct rb_node *node)
407 {
408 struct rb_node *parent;
409
410 if (rb_parent(node) == node)
411 return NULL;
412
413 /* If we have a left-hand child, go down and then right as far
414 as we can. */
415 if (node->rb_left) {
416 node = node->rb_left;
417 while (node->rb_right)
418 node=node->rb_right;
419 return (struct rb_node *)node;
420 }
421
422 /* No left-hand children. Go up till we find an ancestor which
423 is a right-hand child of its parent */
424 while ((parent = rb_parent(node)) && node == parent->rb_left)
425 node = parent;
426
427 return parent;
428 }
429
430 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
431 struct rb_root *root)
432 {
433 struct rb_node *parent = rb_parent(victim);
434
435 /* Set the surrounding nodes to point to the replacement */
436 if (parent) {
437 if (victim == parent->rb_left)
438 parent->rb_left = new;
439 else
440 parent->rb_right = new;
441 } else {
442 root->rb_node = new;
443 }
444 if (victim->rb_left)
445 rb_set_parent(victim->rb_left, new);
446 if (victim->rb_right)
447 rb_set_parent(victim->rb_right, new);
448
449 /* Copy the pointers/colour from the victim to the replacement */
450 *new = *victim;
451 }
红黑树的测试文件(test.c)

1 /**
2 * 根据Linux Kernel定义的红黑树(Red Black Tree)
3 *
4 * @author skywang
5 * @date 2013/11/18
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include "rbtree.h"
11
12 #define CHECK_INSERT 0 // "插入"动作的检测开关(0,关闭;1,打开)
13 #define CHECK_DELETE 0 // "删除"动作的检测开关(0,关闭;1,打开)
14 #define LENGTH(a) ( (sizeof(a)) / (sizeof(a[0])) )
15
16 typedef int Type;
17
18 struct my_node {
19 struct rb_node rb_node; // 红黑树节点
20 Type key; // 键值
21 // ... 用户自定义的数据
22 };
23
24 /*
25 * 查找"红黑树"中键值为key的节点。没找到的话,返回NULL。
26 */
27 struct my_node *my_search(struct rb_root *root, Type key)
28 {
29 struct rb_node *rbnode = root->rb_node;
30
31 while (rbnode!=NULL)
32 {
33 struct my_node *mynode = container_of(rbnode, struct my_node, rb_node);
34
35 if (key < mynode->key)
36 rbnode = rbnode->rb_left;
37 else if (key > mynode->key)
38 rbnode = rbnode->rb_right;
39 else
40 return mynode;
41 }
42
43 return NULL;
44 }
45
46 /*
47 * 将key插入到红黑树中。插入成功,返回0;失败返回-1。
48 */
49 int my_insert(struct rb_root *root, Type key)
50 {
51 struct my_node *mynode; // 新建结点
52 struct rb_node **tmp = &(root->rb_node), *parent = NULL;
53
54 /* Figure out where to put new node */
55 while (*tmp)
56 {
57 struct my_node *my = container_of(*tmp, struct my_node, rb_node);
58
59 parent = *tmp;
60 if (key < my->key)
61 tmp = &((*tmp)->rb_left);
62 else if (key > my->key)
63 tmp = &((*tmp)->rb_right);
64 else
65 return -1;
66 }
67
68 // 如果新建结点失败,则返回。
69 if ((mynode=malloc(sizeof(struct my_node))) == NULL)
70 return -1;
71 mynode->key = key;
72
73 /* Add new node and rebalance tree. */
74 rb_link_node(&mynode->rb_node, parent, tmp);
75 rb_insert_color(&mynode->rb_node, root);
76
77 return 0;
78 }
79
80 /*
81 * 删除键值为key的结点
82 */
83 void my_delete(struct rb_root *root, Type key)
84 {
85 struct my_node *mynode;
86
87 // 在红黑树中查找key对应的节点mynode
88 if ((mynode = my_search(root, key)) == NULL)
89 return ;
90
91 // 从红黑树中删除节点mynode
92 rb_erase(&mynode->rb_node, root);
93 free(mynode);
94 }
95
96 /*
97 * 打印"红黑树"
98 */
99 static void print_rbtree(struct rb_node *tree, Type key, int direction)
100 {
101 if(tree != NULL)
102 {
103 if(direction==0) // tree是根节点
104 printf("%2d(B) is root\n", key);
105 else // tree是分支节点
106 printf("%2d(%s) is %2d's %6s child\n", key, rb_is_black(tree)?"B":"R", key, direction==1?"right" : "left");
107
108 if (tree->rb_left)
109 print_rbtree(tree->rb_left, rb_entry(tree->rb_left, struct my_node, rb_node)->key, -1);
110 if (tree->rb_right)
111 print_rbtree(tree->rb_right,rb_entry(tree->rb_right, struct my_node, rb_node)->key, 1);
112 }
113 }
114
115 void my_print(struct rb_root *root)
116 {
117 if (root!=NULL && root->rb_node!=NULL)
118 print_rbtree(root->rb_node, rb_entry(root->rb_node, struct my_node, rb_node)->key, 0);
119 }
120
121
122 void main()
123 {
124 int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
125 int i, ilen=LENGTH(a);
126 struct rb_root mytree = RB_ROOT;
127
128 printf("== 原始数据: ");
129 for(i=0; i<ilen; i++)
130 printf("%d ", a[i]);
131 printf("\n");
132
133 for (i=0; i < ilen; i++)
134 {
135 my_insert(&mytree, a[i]);
136 #if CHECK_INSERT
137 printf("== 添加节点: %d\n", a[i]);
138 printf("== 树的详细信息: \n");
139 my_print(&mytree);
140 printf("\n");
141 #endif
142
143 }
144
145 #if CHECK_DELETE
146 for (i=0; i<ilen; i++) {
147 my_delete(&mytree, a[i]);
148
149 printf("== 删除节点: %d\n", a[i]);
150 printf("== 树的详细信息: \n");
151 my_print(&mytree);
152 printf("\n");
153 }
154 #endif
155 }
rbtree.h和rbtree.c基本上是从Linux 3.0的Kernel中移植出来的。仅仅只添加了offestof和container_of两个宏,这两个宏在文章"Linux内核中双向链表的经典实现"中已经介绍过了,这里就不再重复说明了。
test.c中包含了两部分内容:一是,基于内核红黑树接口,自定义的一个结构体,并提供了相应的接口(添加、删除、搜索、打印)。二是,包含了相应的测试程序。
来源:https://www.cnblogs.com/skywang12345/p/3624202.html
