陈洋作业一 统计软件简介

这一生的挚爱 提交于 2020-03-16 01:43:39

一、软件介绍

1、SPSS(Statistical Product and Service Solutions),"统计产品与服务解决方案"软件。最初软件全称为"社会科学统计软件包"(SolutionsStatistical Package for the Social Sciences),但是随着SPSS产品服务领域的扩大和服务深度的增加,SPSS公司已于2000年正式将英文全称更改为"统计产品与服务解决方案",标志着SPSS的战略方向正在做出重大调整。为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称SPSS,有Windows和Mac OS X等版本。

 2、R语言

R是用于统计分析、绘图的语言和操作环境。R是属于gnu系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。

R作为一种统计分析软件,是集统计分析与图形显示于一体的。它可以运行于UNIX,Windows和Macintosh的操作系统上,而且嵌入了一个非常方便实用的帮助系统,相比于其他统计分析软件,R还有以下特点:
1.R是自由软件。这意味着它是完全免费,开放源代码的。可以在它的网站及其镜像中下载任何有关的安装程序、源代码、程序包及其源代码、文档资料。标准的安装文件身自身就带有许多模块和内嵌统计函数,安装好后可以直接实现许多常用的统计功能。
2.R是一种可编程的语言。作为一个开放的统计编程环境,语法通俗易懂,很容易学会和掌握语言的语法。而且学会之后,我们可以编制自己的函数来扩展现有的语言。这也就是为什么它的更新速度比一般统计软件,如,SPSS,SAS等快得多。大多数最新的统计方法和技术都可以在R中直接得到。[2] 
3. 所有R的函数和数据集是保存在程序包里面的。只有当一个包被载入时,它的内容才可以被访问。一些常用、基本的程序包已经被收入了标准安装文件中,随着新的统计分析方法的出现,标准安装文件中所包含的程序包也随着版本的更新而不断变化。在另外版安装文件中,已经包含的程序包有:base一R的基础模块、mle一极大似然估计模块、ts一时间序列分析模块、mva一多元统计分析模块、survival一生存分析模块等等.4.R具有很强的互动性。除了图形输出是在另外的窗口处,它的输入输出窗口都是在同一个窗口进行的,输入语法中如果出现错误会马上在窗口口中得到提示,对以前输入过的命令有记忆功能,可以随时再现、编辑修改以满足用户的需要。输出的图形可以直接保存为JPG,BMP,PNG等图片格式,还可以直接保存为PDF文件。另外,和其他编程语言和数据库之间有很好的接口。5.如果加入R的帮助邮件列表一,每天都可能会收到几十份关于R的邮件资讯。可以和全球一流的统计计算方面的专家讨论各种问题,可以说是全世界最大、最前沿的统计学家思维的聚集地.[2] 
R是基于S语言的一个GNU项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。 R的语法是来自Scheme。R的使用与S-PLUS有很多类似之处,这两种语言有一定的兼容性。S-PLUS的使用手册,只要稍加修改就可作为R的使用手册。所以有人说:R,是S-PLUS的一个“克隆”。
但是请不要忘了:R是免费的(R is free)。R语言源代码托管在github,具体地址可以看参考资料。[3]  。
R语言的下载可以通过CRAN的镜像来查找。
R语言有域名为.cn的下载地址,有六个,其中两个由Datagurn。R语言Windows版,其中由两个下载地点是Datagurn和ustc提供的。

3、Stata简介tatsmodels是Python的统计建模和计量经济学工具包,包括一些描述统计、统计模型估计和推断。这篇文章是Statsmodels系列文章的第一篇,主要介绍一下Statsmodels能干什么,以方便一些初学者选择是否需要学习该模块。之后我会发布一些列入门教程,一是作为笔记自己查看,而是作为教程可供学者快速入门,下面我们来看看Statsmodels有啥特性吧。

 (1)线性回归模型

(2)一般线型模型,主要用于各种设计的方差分析

(3)离散选择模型

(4)方差分析模型

4、PYTHON简介:是一种面向对象的解释型计算机程序设计语言,由荷兰人guido van rossum于1989年发明,第一个公开发行版发行于1991年。

 

Python是纯粹的自由软件,源代码和解释器CPython遵循gpl (gunGeneral Public License)协议 。Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。

 

Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中 有特别要求的部分,用更合适的语言改写,比如3d游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。

 

Python的设计目标之一是让代码具备高度的可阅读性。它设计时尽量使用其它语言经常使用的标点符号和英文单字,让代码看起来整洁美观。它不像其他的静态语言如C、Pascal那样需要重复书写声明语句,也不像它们的语法那样经常有特殊情况和意外。

 

 Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且Python语言利用缩进表示语句块的开始和退出(Off-side规则),而非使用花括号或者某种关键字。增加缩进表示语句块的开始,而减少缩进则表示语句块的退出。缩进成为了语法的一部分。

二、操作步骤

 

功能介绍

1)超长变量名:在12版中,变量名已经最多可以为64个字符长度,13版中可能还要大大放宽这一限制,以达到对当今各种复杂数据仓库更好的兼容性。

2)改进的Autorecode过程:该过程将可以使用自动编码模版,从而用户可以按自定义的顺序,而不是默认的ASCII顺序进行变量值的重编码。另外,Autorecode过程将可以同时对多个变量进行重编码,以提高分析效率。

3)改进的日期/时间函数:本次的改进将集中在使得两个日期/时间差值的计算,以及对日期变量值的增减更为容易上。

 

操作简便

界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。

 

编程方便

具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计方法的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。

功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。

模块组合

SPSS for Windows软件分为若干功能模块。用户可以根据自己的分析需要和计算机的实际配置情况灵活选择。

针对性强

SPSS针对初学者、熟练者及精通者都比较适用。并且很多群体只需要掌握简单的操作分析,大多青睐于SPSS。

 

 

简单操作

 

数据升序,降序

 

添加个案

 

计算变量

 

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!