题意:n个点,m有向边,w[i]表示i的价值,求价值最大的哈密顿图(只经过所有点一次)。价值为:所有点的w之和,加上,每条边的价值 = w[i] * w[j],加上,如果连续的三个点相互连接的价值 = w[i] * w[j] * w[k]。不存在输出0 0。n <= 13。
思路:dp[state][i][j]表示state状态下,最后两个为i,j。
代码:
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double eps = 1e-8;
const int maxn = 15 + 10;
const int M = maxn * 30;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
const int MOD = 1e4 + 7;
int w[maxn];
int n, m;
int g[maxn][maxn];
int dp[(1 << 13) + 10][maxn][maxn];
ll way[(1 << 13) + 10][maxn][maxn];
void solve(){
memset(dp, -1, sizeof(dp));
memset(way, 0, sizeof(way));
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
if(i == j) continue;
if(g[i][j] == INF) continue;
dp[(1 << i) | (1 << j)][i][j] = w[i] + w[j] + g[i][j];
way[(1 << i) | (1 << j)][i][j]++;
}
}
for(int t = 0; t < (1 << n) - 1; t++){
for(int i = 0; i < n; i++){
if(!((1 << i) & t)) continue;
for(int j = 0; j < n; j++){
if(!((1 << j) & t)) continue;
if(g[i][j] == INF) continue;
if(dp[t][i][j] == -1) continue;
for(int k = 0; k < n; k++){
if((1 << k) & t) continue;
if(g[j][k] == INF) continue;
ll ret = dp[t][i][j] + w[k] + g[j][k];
if(g[i][k] != INF) ret += w[i] * w[j] * w[k];
if(dp[(1 << k) | t][j][k] < ret){
dp[(1 << k) | t][j][k] = ret;
way[(1 << k) | t][j][k] = way[t][i][j];
}
else if(dp[(1 << k) | t][j][k] == ret){
way[(1 << k) | t][j][k] += way[t][i][j];
}
}
}
}
}
}
int main(){
int T;
scanf("%d", &T);
while(T--){
scanf("%d%d", &n, &m);
for(int i = 0; i < n; i++)
scanf("%d", &w[i]);
memset(g, INF, sizeof(g));
for(int i = 0; i < m; i++){
int u, v;
scanf("%d%d", &u, &v);
u--, v--;
g[u][v] = g[v][u] = w[u] * w[v];
}
if(n == 1){
printf("%d 1\n", w[0]);
continue;
}
solve();
ll ans = 0, num = 0;
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
if(i == j) continue;
if(g[i][j] == INF) continue;
if(dp[(1 << n) - 1][i][j] > ans){
ans = dp[(1 << n) - 1][i][j];
num = way[(1 << n) - 1][i][j];
}
else if(dp[(1 << n) - 1][i][j] == ans){
num += way[(1 << n) - 1][i][j];
}
}
}
printf("%lld %lld\n", ans, num / 2);
}
return 0;
}
/*
3
3 1
2 2 2
1 2
*/
来源:https://www.cnblogs.com/KirinSB/p/10945242.html