线程状态概述
当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态。在线程的生命周期中,有几种状态呢?在API中 java.lang.Thread.State 这个枚举中给出了六种线程状态:
这里先列出各个线程状态发生的条件,下面将会对每种状态进行详细解析
我们不需要去研究这几种状态的实现原理,我们只需知道在做线程操作中存在这样的状态。那我们怎么去理解这几个状态呢,新建与被终止还是很容易理解的,我们就研究一下线程从Runnable(可运行)状态与非运行状态之间的转换问题
Timed Waiting(计时等待)
Timed Waiting在API中的描述为:一个正在限时等待另一个线程执行一个(唤醒)动作的线程处于这一状态。单独的去理解这句话,真是玄之又玄。我们需要记住下面几点:
- 进入 TIMED_WAITING 状态的一种常见情形是调用的 sleep 方法,单独的线程也可以调用,不一定非要有协作关系。
- 为了让其他线程有机会执行,可以将Thread.sleep()的调用放线程run()之内。这样才能保证该线程执行过程中会睡眠
- sleep与锁无关,线程睡眠到期自动苏醒,并返回到Runnable(可运行)状态。sleep()中指定的时间是线程不会运行的最短时间。因此,sleep()方法不能保证该线程睡眠到期后就开始立刻执行。
Timed Waiting 线程状态图:
BLOCKED(锁阻塞)
Blocked状态在API中的介绍为:一个正在阻塞等待一个监视器锁(锁对象)的线程处于这一状态。我们已经学完同步机制,那么这个状态是非常好理解的了。比如,线程A与线程B代码中使用同一锁,如果线程A获取到锁,线程A进入到Runnable状态,那么线程B就进入到Blocked锁阻塞状态。这是由Runnable状态进入Blocked状态。除此Waiting以及Time Waiting状态也会在某种情况下进入阻塞状态。
Blocked 线程状态图
Waiting(无限等待)
Wating状态在API中介绍为:一个正在无限期等待另一个线程执行一个特别的(唤醒)动作的线程处于这一状态。 一个调用了某个对象的 Object.wait 方法的线程会等待另一个线程调用此对象的Object.notify()方法 或 Object.notifyAll()方法。其实waiting状态并不是一个线程的操作,它体现的是多个线程间的通信,可以理解为多个线程之间的协作关系,多个线程会争取锁,同时相互之间又存在协作关系。就好比在公司里你和你的同事们,你们可能存在晋升时的竞争,但更多时候你们更多是一起合作以完成某些任务。当多个线程协作时,比如A,B线程,如果A线程在Runnable(可运行)状态中调用了wait()方法那么A线程就进入了Waiting(无限等待)状态,同时失去了同步锁。假如这个时候B线程获取到了同步锁,在运行状态中调用了notify()方法,那么就会将无限等待的A线程唤醒。注意是唤醒,如果获取到锁对象,那么A线程唤醒后就进入Runnable(可运行)状态;如果没有获取锁对象,那么就进入到Blocked(锁阻塞状态)。
Waiting 线程状态图
线程状态转换图
我们在翻阅API的时候会发现Timed Waiting(计时等待) 与 Waiting(无限等待) 状态联系还是很紧密的,比如Waiting(无限等待) 状态中wait方法是空参的,而timed waiting(计时等待) 中wait方法是带参的。这种带参的方法,其实是一种倒计时操作,相当于我们生活中的小闹钟,我们设定好时间,到时通知,可是如果提前得到(唤醒)通知,那么设定好时间在通知也就显得多此一举了,那么这种设计方案其实是一举两得。如果没有得到(唤醒)通知,那么线程就处于Timed Waiting状态,直到倒计时完毕自动醒来;如果在倒计时期间得到(唤醒)通知,那么线程从Timed Waiting状态立刻唤醒。
线程同步
什么是线程安全问题?
- 如果有多个线程在同时运行,而这些线程可能会同时运行这段代码。程序每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。 如果程序每次运行结果和单线程运行的结果是不一样的我们称之为线程安全问题。线程安全问题都是由全局变量及静态变量引起的。若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作,一般都需要考虑线程同步,否则的话就可能影响线程安全。
问题的原因:
- 当多条语句在操作同一个线程共享数据时,一个线程对多条语句只执行了一部分,还没有 执行完,另一个线程参与进来执行。导致共享数据的错误。
解决办法:
- 对多条操作共享数据的语句,只能让一个线程都执行完,在执行过程中,其他线程不可以参与执行。
怎么解决线程安全问题
为了保证每个线程都能正常执行原子操作,Java引入了线程同步机制。那么怎么去使用呢?有三种方式完成同步操作:
- 同步代码块。
- 同步方法。
- 锁机制。
同步代码块
同步代码块: synchronized 关键字可以用于方法中的某个区块中,表示只对这个区块的资源实行互斥访问。
格式:
同步锁:
对象的同步锁只是一个概念,可以想象为在对象上标记了一个锁.
- 锁对象 可以是任意类型。
- 多个线程对象 要使用同一把锁。
- 在任何时候,最多允许一个线程拥有同步锁,谁拿到锁就进入代码块,其他的线程只能在外等着(BLOCKED)
使用同步代码块解决代码:
package demo05;
/*
卖票案例出现了线程安全问题
卖出了不存在的票和重复的票
解决线程安全问题的一种方案:使用同步代码块
格式:
synchronized(锁对象){
可能会出现线程安全问题的代码(访问了共享数据的代码)
}
注意:
1.通过代码块中的锁对象,可以使用任意的对象
2.但是必须保证多个线程使用的锁对象是同一个
3.锁对象作用:
把同步代码块锁住,只让一个线程在同步代码块中执行
*/
public class RunnableImpl implements Runnable {
//定义一个多个线程共享的票源
private int ticket = 100;
//创建一个锁对象
Object obj = new Object();
//设置线程任务:卖票
@Override
public void run() {
//使用死循环,让卖票操作重复执行
while (true) {
//同步代码块
synchronized (obj) {
//先判断票是否存在
if (ticket > 0) {
//提高安全问题出现的概率,让程序睡眠
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
//票存在,卖票 ticket--
System.out.println(Thread.currentThread().getName() + "-->正在卖第" + ticket + "张票");
ticket--;
}
}
}
}
}
同步方法
同步方法:使用synchronized修饰的方法,就叫做同步方法,保证A线程执行该方法的时候,其他线程只能在方法外等着。
格式:
同步锁是谁?
- 对于非static方法,同步锁就是this。
- 对于static方法,我们使用当前方法所在类的字节码对象(类名.class)。
使用同步方法代码如下
package demo06;
/*
卖票案例出现了线程安全问题
卖出了不存在的票和重复的票
解决线程安全问题的二种方案:使用同步方法
使用步骤:
1.把访问了共享数据的代码抽取出来,放到一个方法中
2.在方法上添加synchronized修饰符
格式:定义方法的格式
修饰符 synchronized 返回值类型 方法名(参数列表){
可能会出现线程安全问题的代码(访问了共享数据的代码)
}
*/
public class RunnableImpl implements Runnable {
//定义一个多个线程共享的票源
private static int ticket = 100;
//设置线程任务:卖票
@Override
public void run() {
//使用死循环,让卖票操作重复执行
while (true) {
payTicketStatic();
}
}
/*
静态的同步方法
锁对象是谁?
不能是this
this是创建对象之后产生的,静态方法优先于对象
静态方法的锁对象是本类的class属性-->class文件对象(反射)
*/
public static /*synchronized*/ void payTicketStatic() {
synchronized (RunnableImpl.class) {
//先判断票是否存在
if (ticket > 0) {
//提高安全问题出现的概率,让程序睡眠
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
//票存在,卖票 ticket--
System.out.println(Thread.currentThread().getName() + "-->正在卖第" + ticket + "张票");
ticket--;
}
}
}
}
总结:
同步机制中的锁
- 在《Thinking in Java》中,是这么说的:对于并发工作,你需要某种方式来防 止两个任务访问相同的资源(其实就是共享资源竞争)。 防止这种冲突的方法 就是当资源被一个任务使用时,在其上加锁。第一个访问某项资源的任务必须 锁定这项资源,使其他任务在其被解锁之前,就无法访问它了,而在其被解锁 之时,另一个任务就可以锁定并使用它了。
synchronized的锁是什么?
- 任意对象都可以作为同步锁。所有对象都自动含有单一的锁(监视器)。
- 同步方法的锁:静态方法(类名.class)、非静态方法(this)
- 同步代码块:自己指定,很多时候也是指定为this或类名.class
注意:
- 必须确保使用同一个资源的多个线程共用一把锁,这个非常重要,否则就 无法保证共享资源的安全
- 一个线程类中的所有静态方法共用同一把锁(类名.class),所有非静态方 法共用同一把锁(this),同步代码块(指定需谨慎)
如何找问题,即代码是否存在线程安全?(非常重要)
- 明确哪些代码是多线程运行的代码
- 明确多个线程是否有共享数据
- 明确多线程运行代码中是否有多条语句操作共享数据
如何解决呢?(非常重要)
- 对多条操作共享数据的语句,只能让一个线程都执行完,在执行过程中,其 他线程不可以参与执行。 即所有操作共享数据的这些语句都要放在同步范围中
切记:
- 范围太小:没锁住所有有安全问题的代码
- 范围太大:没发挥多线程的功能。
释放锁的操作
- 当前线程的同步方法、同步代码块执行结束。
- 当前线程在同步代码块、同步方法中遇到break、return终止了该代码块、 该方法的继续执行。
- 当前线程在同步代码块、同步方法中出现了未处理的Error或Exception,导 致异常结束。
- 当前线程在同步代码块、同步方法中执行了线程对象的wait()方法,当前线 程暂停,并释放锁
不会释放锁的操作
- 线程执行同步代码块或同步方法时,程序调用Thread.sleep()、 Thread.yield()方法暂停当前线程的执行
- 线程执行同步代码块时,其他线程调用了该线程的suspend()方法将该线程挂起,该线程不会释放锁(同步监视器)。
- 应尽量避免使用suspend()和resume()来控制线程
单例设计模式之懒汉式(线程安全)
/**
* 使用同步机制将单例模式中的懒汉式改写为线程安全的
*/
class Bank {
//私有化构造器
private Bank() {
}
//设置初始化值
private static Bank instance = null;
public static Bank getInstance() {
/*
//方式一:效率稍差
synchronized (Bank.class) {
if(instance == null){
instance = new Bank();
}
return instance;
}
*/
//方式二:效率更高
if (instance == null) {
//同步代码块
synchronized (Bank.class) {
if (instance == null) {
instance = new Bank();
}
}
}
return instance;
}
}
线程的死锁问题
- 死锁 :不同的线程分别占用对方需要的同步资源不放弃,都在等待对方放弃 自己需要的同步资源,就形成了线程的死锁 出现死锁后,不会出现异常,不会出现提示,只是所有的线程都处于 阻塞状态,无法继续
解决方法
- 专门的算法、原则
- 尽量减少同步资源的定义
- 尽量避免嵌套同步
Lock(锁)
- 从JDK 5.0开始,Java提供了更强大的线程同步机制——通过显式定义同步锁对象来实现同步。同步锁使用Lock对象充当。
- java.util.concurrent.locks.Lock接口是控制多个线程对共享资源进行访问的 工具。锁提供了对共享资源的独占访问,每次只能一个线程对Lock对象 加锁,线程开始访问共享资源之前应先获得Lock对象。
- ReentrantLock 类实现了 Lock ,它拥有与 synchronized 相同的并发性和 内存语义,在实现线程安全的控制中,比较常用的是ReentrantLock,可以 显式加锁、释放锁。
Lock锁也称同步锁,加锁与释放锁方法化了,如下:
- public void lock() :加同步锁。
- public void unlock() :释放同步锁。
举例使用如下:
package demo07;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/*
卖票案例出现了线程安全问题
卖出了不存在的票和重复的票
解决线程安全问题的三种方案:使用Lock锁
java.util.concurrent.locks.Lock接口
Lock 实现提供了比使用 synchronized 方法和语句可获得的更广泛的锁定操作。
Lock接口中的方法:
void lock()获取锁。
void unlock() 释放锁。
java.util.concurrent.locks.ReentrantLock implements Lock接口
使用步骤:
1.在成员位置创建一个ReentrantLock对象
2.在可能会出现安全问题的代码前调用Lock接口中的方法lock获取锁
3.在可能会出现安全问题的代码后调用Lock接口中的方法unlock释放锁
*/
public class RunnableImpl implements Runnable {
//定义一个多个线程共享的票源
private int ticket = 100;
//1.在成员位置创建一个ReentrantLock对象
Lock l = new ReentrantLock();
//设置线程任务:卖票
@Override
public void run() {
//使用死循环,让卖票操作重复执行
while (true) {
//2.在可能会出现安全问题的代码前调用Lock接口中的方法lock获取锁
l.lock();
//先判断票是否存在
if (ticket > 0) {
//提高安全问题出现的概率,让程序睡眠
try {
Thread.sleep(10);
//票存在,卖票 ticket--
System.out.println(Thread.currentThread().getName() + "-->正在卖第" + ticket + "张票");
ticket--;
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
//3.在可能会出现安全问题的代码后调用Lock接口中的方法unlock释放锁
l.unlock();//无论程序是否异常,都会把锁释放
}
}
}
}
}
synchronized 与 Lock 的对比
- Lock是显式锁(手动开启和关闭锁,别忘记关闭锁),synchronized是隐式锁,出了作用域自动释放
- Lock只有代码块锁,synchronized有代码块锁和方法锁
- 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多的子类)
优先使用顺序:
- Lock -->同步代码块(已经进入了方法体,分配了相应资源) --> 同步方法 (在方法体之外)
练习
/**
* 银行有一个账户。
* 有两个储户分别向同一个账户存3000元,每次存1000,存3次。每次存完打印账户余额。
* <p>
* 分析:
* 1.是否是多线程问题? 是,两个储户线程
* 2.是否有共享数据? 有,账户(或账户余额)
* 3.是否有线程安全问题?有
* 4.需要考虑如何解决线程安全问题?同步机制:有三种方式。
*/
//创建账户类
class Account {
private double balance;
public Account(double balance) {
this.balance = balance;
}
//存钱,使用同步方法
public synchronized void deposit(double amt) {
if (amt > 0) {
balance += amt;
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + ":存钱成功。余额为:" + balance);
}
}
}
//创建子线程
class Customer extends Thread {
private Account acct;
public Customer(Account acct) {
this.acct = acct;
}
@Override
public void run() {
for (int i = 0; i < 3; i++) {
acct.deposit(1000);
}
}
}
//定义测试类
public class AccountTest {
public static void main(String[] args) {
Account acct = new Account(0);
Customer c1 = new Customer(acct);
Customer c2 = new Customer(acct);
c1.setName("甲");
c2.setName("乙");
c1.start();
c2.start();
}
}
线程的通信
概念:多个线程在处理同一个资源,但是处理的动作(线程的任务)却不相同。
为什么要处理线程间通信:
- 多个线程并发执行时, 在默认情况下CPU是随机切换线程的,当我们需要多个线程来共同完成一件任务,并且我们希望他们有规律的执行, 那么多线程之间需要一些协调通信,以此来帮我们达到多线程共同操作一份数据。
如何保证线程间通信有效利用资源:
- 多个线程在处理同一个资源,并且任务不同时,需要线程通信来帮助解决线程之间对同一个变量的使用或操作。 就是多个线程在操作同一份数据时, 避免对同一共享变量的争夺。也就是我们需要通过一定的手段使各个线程能有效的利用资源。而这种手段即—— 等待唤醒机制。
举例
定义测试类
package demo02;
/**
* 线程通信的例子:使用两个线程打印 1-100。线程1, 线程2 交替打印
* <p>
* 涉及到的三个方法:
* wait():一旦执行此方法,当前线程就进入阻塞状态,并释放同步监视器。
* notify():一旦执行此方法,就会唤醒被wait的一个线程。如果有多个线程被wait,就唤醒优先级高的那个。
* notifyAll():一旦执行此方法,就会唤醒所有被wait的线程。
* <p>
* 说明:
* 1.wait(),notify(),notifyAll()三个方法必须使用在同步代码块或同步方法中。
* 2.wait(),notify(),notifyAll()三个方法的调用者必须是同步代码块或同步方法中的同步监视器。
* 否则,会出现IllegalMonitorStateException异常
* 3.wait(),notify(),notifyAll()三个方法是定义在java.lang.Object类中。
* <p>
* 面试题:sleep() 和 wait()的异同?
* 1.相同点:一旦执行方法,都可以使得当前的线程进入阻塞状态。
* 2.不同点:1)两个方法声明的位置不同:Thread类中声明sleep() , Object类中声明wait()
* 2)调用的要求不同:sleep()可以在任何需要的场景下调用。 wait()必须使用在同步代码块或同步方法中
* 3)关于是否释放同步监视器:如果两个方法都使用在同步代码块或同步方法中,sleep()不会释放锁,wait()会释放锁。
*/
public class Demo implements Runnable {
private int i = 1;
//创建同步锁对象
Object ob = new Object();
@Override
public void run() {
while (true) {
//使用同步代码块
synchronized (ob) {
//notify():唤醒正在排队等待同步资源的线程中优先级最高者结束等待
ob.notify();
if (i <= 100) {
System.out.println(Thread.currentThread().getName() + "--" + i);
i++;
} else {
break;
}
try {
//使得调用如下wait()方法的线程进入阻塞状态
ob.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
定义测试类
package demo02;
public class Test {
public static void main(String[] args) {
Demo d = new Demo();
//多线程,共享同一份数据
Thread t1 = new Thread(d);
Thread t2 = new Thread(d);
//开启线程
t1.start();
t2.start();
}
}
等待唤醒中的方法
等待唤醒机制就是用于解决线程间通信的问题的,使用到的3个方法wait() 与 notify() 和 notifyAll()的含义如下:
- wait():令当前线程挂起并放弃CPU、同步资源并等待,使别的线程可访问并修改共享资源,而当 前线程排队等候其他线程调用notify()或notifyAll()方法唤醒,唤醒后等待重新获得对监视器的所有 权后才能继续执行。
- notify():唤醒正在排队等待同步资源的线程中优先级最高者结束等待
- notifyAll ():唤醒正在排队等待资源的所有线程结束等待.
注意:
- 这三个方法只有在synchronized方法或synchronized代码块中才能使用,否则会报 java.lang.IllegalMonitorStateException异常。 因为这三个方法必须有锁对象调用,而任意对象都可以作为synchronized的同步锁, 因此这三个方法只能在Object类中声明。
wait() 方法
- 在当前线程中调用方法: 对象名.wait()
- 使当前线程进入等待(某对象)状态 ,直到另一线程对该对象发出 notify (或notifyAll) 为止。
- 调用方法的必要条件:当前线程必须具有对该对象的监控权(加锁)
- 调用此方法后,当前线程将释放对象监控权 ,然后进入等待
- 在当前线程被notify后,要重新获得监控权,然后从断点处继续代码的执行。
notify()/notifyAll()
- 在当前线程中调用方法: 对象名.notify()
- 功能:唤醒等待该对象监控权的一个/所有线程。
- 调用方法的必要条件:当前线程必须具有对该对象的监控权(加锁)
经典例题:生产者/消费者问题
- 生产者(Productor)将产品交给店员(Clerk),而消费者(Customer)从店员处 取走产品,店员一次只能持有固定数量的产品(比如:20),如果生产者试图 生产更多的产品,店员会叫生产者停一下,如果店中有空位放产品了再通 知生产者继续生产;如果店中没有产品了,店员会告诉消费者等一下,如 果店中有产品了再通知消费者来取走产品。
这里可能出现两个问题:
- 生产者比消费者快时,消费者会漏掉一些数据没有取到。
- 消费者比生产者快时,消费者会取相同的数据。
代码实现
package demo02;
/**
* 线程通信的应用:经典例题:生产者/消费者问题
*
* 生产者(Productor)将产品交给店员(Clerk),而消费者(Customer)从店员处取走产品,
* 店员一次只能持有固定数量的产品(比如:20),如果生产者试图生产更多的产品,店员
* 会叫生产者停一下,如果店中有空位放产品了再通知生产者继续生产;如果店中没有产品
* 了,店员会告诉消费者等一下,如果店中有产品了再通知消费者来取走产品。
*
* 分析:
* 1. 是否是多线程问题?是,生产者线程,消费者线程
* 2. 是否有共享数据?是,店员(或产品)
* 3. 如何解决线程的安全问题?同步机制,有三种方法
* 4. 是否涉及线程的通信?是
*
* @author shkstart
* @create 2019-02-15 下午 4:48
*/
class Clerk{
private int productCount = 0;
//生产产品
public synchronized void produceProduct() {
if(productCount < 20){
productCount++;
System.out.println(Thread.currentThread().getName() + ":开始生产第" + productCount + "个产品");
notify();
}else{
//等待
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//消费产品
public synchronized void consumeProduct() {
if(productCount > 0){
System.out.println(Thread.currentThread().getName() + ":开始消费第" + productCount + "个产品");
productCount--;
notify();
}else{
//等待
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
class Producer extends Thread{//生产者
private Clerk clerk;
public Producer(Clerk clerk) {
this.clerk = clerk;
}
@Override
public void run() {
System.out.println(getName() + ":开始生产产品.....");
while(true){
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
clerk.produceProduct();
}
}
}
class Consumer extends Thread{//消费者
private Clerk clerk;
public Consumer(Clerk clerk) {
this.clerk = clerk;
}
@Override
public void run() {
System.out.println(getName() + ":开始消费产品.....");
while(true){
try {
Thread.sleep(20);
} catch (InterruptedException e) {
e.printStackTrace();
}
clerk.consumeProduct();
}
}
}
public class ProductTest {
public static void main(String[] args) {
Clerk clerk = new Clerk();
Producer p1 = new Producer(clerk);
p1.setName("生产者1");
Consumer c1 = new Consumer(clerk);
c1.setName("消费者1");
Consumer c2 = new Consumer(clerk);
c2.setName("消费者2");
p1.start();
c1.start();
c2.start();
}
}
JDK5.0 新增线程创建方式
新增方式一:实现Callable接口
与使用Runnable相比, Callable功能更强大些
- 相比run()方法,可以有返回值
- 方法可以抛出异常
- 支持泛型的返回值
- 需要借助FutureTask类,比如获取返回结果
Future接口
- 可以对具体Runnable、Callable任务的执行结果进行取消、查询是 否完成、获取结果等。
- FutrueTask是Futrue接口的唯一的实现类
- FutureTask 同时实现了Runnable, Future接口。它既可以作为 Runnable被线程执行,又可以作为Future得到Callable的返回值
举例:
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
/**
* 创建线程的方式三:实现Callable接口。 --- JDK 5.0新增
*
*
* 如何理解实现Callable接口的方式创建多线程比实现Runnable接口创建多线程方式强大?
* 1. call()可以有返回值的。
* 2. call()可以抛出异常,被外面的操作捕获,获取异常的信息
* 3. Callable是支持泛型的
*
* @author shkstart
* @create 2019-02-15 下午 6:01
*/
//1.创建一个实现Callable的实现类
class NumThread implements Callable{
//2.实现call方法,将此线程需要执行的操作声明在call()中
@Override
public Object call() throws Exception {
int sum = 0;
for (int i = 1; i <= 100; i++) {
if(i % 2 == 0){
System.out.println(i);
sum += i;
}
}
return sum;
}
}
public class ThreadNew {
public static void main(String[] args) {
//3.创建Callable接口实现类的对象
NumThread numThread = new NumThread();
//4.将此Callable接口实现类的对象作为传递到FutureTask构造器中,创建FutureTask的对象
FutureTask futureTask = new FutureTask(numThread);
//5.将FutureTask的对象作为参数传递到Thread类的构造器中,创建Thread对象,并调用start()
new Thread(futureTask).start();
try {
//6.获取Callable中call方法的返回值
//get()返回值即为FutureTask构造器参数Callable实现类重写的call()的返回值。
Object sum = futureTask.get();
System.out.println("总和为:" + sum);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
}
线程池
由来
- 我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?在Java中可以通过线程池来达到这样的效果。
线程池概念
- 线程池:其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源。
合理利用线程池能够带来三个好处:
- 降低资源消耗。减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
- 提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
- 提高线程的可管理性。可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。
线程池的使用
- Java里面线程池的顶级接口是 java.util.concurrent.Executor ,但是严格意义上讲 Executor 并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是 java.util.concurrent.ExecutorService 。要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在 java.util.concurrent.Executors 线程工厂类里面提供了一些静态工厂,生成一些常用的线程池。官方建议使用Executors工程类来创建线程池对象。
Executors类中有个创建线程池的方法如下:
- public static ExecutorService newFixedThreadPool(int nThreads) :返回线程池对象。(创建的是有界线程池,也就是池中的线程个数可以指定最大数量)
获取到了一个线程池ExecutorService 对象,那么怎么使用呢,在这里定义了一个使用线程池对象的方法如下:
- public Future<?> submit(Runnable task) :获取线程池中的某一个线程对象,并执行
Future接口:用来记录线程任务执行完毕后产生的结果。线程池创建与使用。
使用线程池中线程对象的步骤:
- 创建线程池对象。
- 创建Runnable接口子类对象。
- 提交Runnable接口子类对象。(take task)
- 关闭线程池(一般不做)。
Runnable实现类代码:
package demo02;
/*
2.创建一个类,实现Runnable接口,重写run方法,设置线程任务
*/
public class RunnableImpl implements Runnable {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + "创建了一个新的线程执行");
}
}
定义测试类
package demo02;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/*
线程池:JDK1.5之后提供的
java.util.concurrent.Executors:线程池的工厂类,用来生成线程池
Executors类中的静态方法:
static ExecutorService newFixedThreadPool(int nThreads) 创建一个可重用固定线程数的线程池
参数:
int nThreads:创建线程池中包含的线程数量
返回值:
ExecutorService接口,返回的是ExecutorService接口的实现类对象,我们可以使用ExecutorService接口接收
java.util.concurrent.ExecutorService:线程池接口
用来从线程池中获取线程,调用start方法,执行线程任务
submit(Runnable task) 提交一个 Runnable 任务用于执行
关闭/销毁线程池的方法
void shutdown()
线程池的使用步骤:
1.使用线程池的工厂类Executors里边提供的静态方法newFixedThreadPool生产一个指定线程数量的线程池
2.创建一个类,实现Runnable接口,重写run方法,设置线程任务
3.调用ExecutorService中的方法submit,传递线程任务(实现类),开启线程,执行run方法
4.调用ExecutorService中的方法shutdown销毁线程池(不建议执行)
*/
public class Demo01ThreadPool {
public static void main(String[] args) {
//1.使用线程池的工厂类Executors里边提供的静态方法newFixedThreadPool生产一个指定线程数量的线程池
ExecutorService es = Executors.newFixedThreadPool(2);
//3.调用ExecutorService中的方法submit,传递线程任务(实现类),开启线程,执行run方法
es.submit(new RunnableImpl());//pool-1-thread-1创建了一个新的线程执行
//线程池会一直开启,使用完了线程,会自动把线程归还给线程池,线程可以继续使用
es.submit(new RunnableImpl());//pool-1-thread-1创建了一个新的线程执行
es.submit(new RunnableImpl());//pool-1-thread-2创建了一个新的线程执行
//4.调用ExecutorService中的方法shutdown销毁线程池(不建议执行)
es.shutdown();
es.submit(new RunnableImpl());//抛异常,线程池都没有了,就不能获取线程了
}
}
总结一下线程池相关API
JDK 5.0起提供了线程池相关API:ExecutorService 和 Executors
ExecutorService:真正的线程池接口。常见子类ThreadPoolExecutor
- void execute(Runnable command) :执行任务/命令,没有返回值,一般用来执行 Runnable
- <T> Future<T> submit(Callable<T> task):执行任务,有返回值,一般又来执行Callable
- void shutdown() :关闭连接池
Executors:工具类、线程池的工厂类,用于创建并返回不同类型的线程池
- Executors.newCachedThreadPool():创建一个可根据需要创建新线程的线程池
- Executors.newFixedThreadPool(n); 创建一个可重用固定线程数的线程池
- Executors.newSingleThreadExecutor() :创建一个只有一个线程的线程池
- Executors.newScheduledThreadPool(n):创建一个线程池,它可安排在给定延迟后运 行命令或者定期地执行
来源:CSDN
作者:java_pedestrian
链接:https://blog.csdn.net/weixin_44462792/article/details/104752618