圆形缓冲区-MapReduce中的

假如想象 提交于 2020-02-27 15:54:16

这篇文章来自一个读者在面试过程中的一个问题,Hadoop在shuffle过程中使用了一个数据结构-环形缓冲区。

环形队列是在实际编程极为有用的数据结构,它是一个首尾相连的FIFO的数据结构,采用数组的线性空间,数据组织简单。能很快知道队列是否满为空。能以很快速度的来存取数据。 因为有简单高效的原因,甚至在硬件都实现了环形队列。

环形队列广泛用于网络数据收发,和不同程序间数据交换(比如内核与应用程序大量交换数据,从硬件接收大量数据)均使用了环形队列。 环形缓冲区数据结构

Map过程中环形缓冲区是指数据被map处理之后会先放入内存,内存中的这片区域就是环形缓冲区。

环形缓冲区是在MapTask.MapOutputBuffer中定义的,相关的属性如下:

// k/v accounting // 存放meta数据的IntBuffer,都是int entry,占4byte private IntBuffer kvmeta; // metadata overlay on backing store int kvstart; // marks origin of spill metadata int kvend; // marks end of spill metadata int kvindex; // marks end of fully serialized records // 分割meta和key value内容的标识 // meta数据和key value内容都存放在同一个环形缓冲区,所以需要分隔开 int equator; // marks origin of meta/serialization int bufstart; // marks beginning of spill int bufend; // marks beginning of collectable int bufmark; // marks end of record int bufindex; // marks end of collected int bufvoid; // marks the point where we should stop // reading at the end of the buffer // 存放key value的byte数组,单位是byte,注意与kvmeta区分 byte[] kvbuffer; // main output buffer private final byte[] b0 = new byte[0];

// key value在kvbuffer中的地址存放在偏移kvindex的距离 private static final int VALSTART = 0; // val offset in acct private static final int KEYSTART = 1; // key offset in acct // partition信息存在kvmeta中偏移kvindex的距离 private static final int PARTITION = 2; // partition offset in acct private static final int VALLEN = 3; // length of value // 一对key value的meta数据在kvmeta中占用的个数 private static final int NMETA = 4; // num meta ints // 一对key value的meta数据在kvmeta中占用的byte数 private static final int METASIZE = NMETA * 4; // size in bytes

环形缓冲区其实是一个数组,数组中存放着key、value的序列化数据和key、value的元数据信息,key/value的元数据存储的格式是int类型,每个key/value对应一个元数据,元数据由4个int组成,第一个int存放value的起始位置,第二个存放key的起始位置,第三个存放partition,最后一个存放value的长度。

key/value序列化的数据和元数据在环形缓冲区中的存储是由equator分隔的,key/value按照索引递增的方向存储,meta则按照索引递减的方向存储,将其数组抽象为一个环形结构之后,以equator为界,key/value顺时针存储,meta逆时针存储。

初始化

环形缓冲区的结构在MapOutputBuffer.init中创建。

public void init(MapOutputCollector.Context context ) throws IOException, ClassNotFoundException { ... //MAP_SORT_SPILL_PERCENT = mapreduce.map.sort.spill.percent // map 端buffer所占的百分比 //sanity checks final float spillper = job.getFloat(JobContext.MAP_SORT_SPILL_PERCENT, (float)0.8); //IO_SORT_MB = "mapreduce.task.io.sort.mb" // map 端buffer大小 // mapreduce.task.io.sort.mb * mapreduce.map.sort.spill.percent 最好是16的整数倍 final int sortmb = job.getInt(JobContext.IO_SORT_MB, 100); // 所有的spill index 在内存所占的大小的阈值 indexCacheMemoryLimit = job.getInt(JobContext.INDEX_CACHE_MEMORY_LIMIT, INDEX_CACHE_MEMORY_LIMIT_DEFAULT); ... // 排序的实现类,可以自己实现。这里用的是改写的快排 sorter = ReflectionUtils.newInstance(job.getClass("map.sort.class", QuickSort.class, IndexedSorter.class), job); // buffers and accounting // 上面IO_SORT_MB的单位是MB,左移20位将单位转化为byte int maxMemUsage = sortmb << 20; // METASIZE是元数据的长度,元数据有4个int单元,分别为 // VALSTART、KEYSTART、PARTITION、VALLEN,而int为4个byte, // 所以METASIZE长度为16。下面是计算buffer中最多有多少byte来存元数据 maxMemUsage -= maxMemUsage % METASIZE; // 元数据数组 以byte为单位 kvbuffer = new byte[maxMemUsage]; bufvoid = kvbuffer.length; // 将kvbuffer转化为int型的kvmeta 以int为单位,也就是4byte kvmeta = ByteBuffer.wrap(kvbuffer) .order(ByteOrder.nativeOrder()) .asIntBuffer(); // 设置buf和kvmeta的分界线 setEquator(0); bufstart = bufend = bufindex = equator; kvstart = kvend = kvindex; // kvmeta中存放元数据实体的最大个数 maxRec = kvmeta.capacity() / NMETA; // buffer spill时的阈值(不单单是sortmbspillper) // 更加精确的是kvbuffer.lengthspiller softLimit = (int)(kvbuffer.length * spillper); // 此变量较为重要,作为spill的动态衡量标准 bufferRemaining = softLimit; ... // k/v serialization comparator = job.getOutputKeyComparator(); keyClass = (Class<k>)job.getMapOutputKeyClass(); valClass = (Class<v>)job.getMapOutputValueClass(); serializationFactory = new SerializationFactory(job); keySerializer = serializationFactory.getSerializer(keyClass); // 将bb作为key序列化写入的output keySerializer.open(bb); valSerializer = serializationFactory.getSerializer(valClass); // 将bb作为value序列化写入的output valSerializer.open(bb); ... // combiner ... spillInProgress = false; // 最后一次merge时,在有combiner的情况下,超过此阈值才执行combiner minSpillsForCombine = job.getInt(JobContext.MAP_COMBINE_MIN_SPILLS, 3); spillThread.setDaemon(true); spillThread.setName("SpillThread"); spillLock.lock(); try { spillThread.start(); while (!spillThreadRunning) { spillDone.await(); } } catch (InterruptedException e) { throw new IOException("Spill thread failed to initialize", e); } finally { spillLock.unlock(); } if (sortSpillException != null) { throw new IOException("Spill thread failed to initialize", sortSpillException); } }

init是对环形缓冲区进行初始化构造,由mapreduce.task.io.sort.mb决定map中环形缓冲区的大小sortmb,默认是100M。

此缓冲区也用于存放meta,一个meta占用METASIZE(16byte),则其中用于存放数据的大小是maxMemUsage -= sortmb << 20 % METASIZE(由此可知最好设置sortmb转换为byte之后是16的整数倍),然后用maxMemUsage初始化kvbuffer字节数组和kvmeta整形数组,最后设置数组的一些标识信息。利用setEquator(0)设置kvbuffer和kvmeta的分界线,初始化的时候以0为分界线,kvindex为aligned - METASIZE + kvbuffer.length,其位置在环形数组中相当于按照逆时针方向减去METASIZE,由kvindex设置kvstart = kvend = kvindex,由equator设置bufstart = bufend = bufindex = equator,还得设置bufvoid = kvbuffer.length,bufvoid用于标识用于存放数据的最大位置。

为了提高效率,当buffer占用达到阈值之后,会进行spill,这个阈值是由bufferRemaining进行检查的,bufferRemaining由softLimit = (int)(kvbuffer.length * spillper); bufferRemaining = softLimit;进行初始化赋值,这里需要注意的是softLimit并不是sortmbspillper,而是kvbuffer.length * spillper,当sortmb << 20是16的整数倍时,才可以认为softLimit是sortmbspillper。

下面是setEquator的代码

// setEquator(0)的代码如下 private void setEquator(int pos) { equator = pos; // set index prior to first entry, aligned at meta boundary // 第一个 entry的末尾位置,即元数据和kv数据的分界线 单位是byte final int aligned = pos - (pos % METASIZE); // Cast one of the operands to long to avoid integer overflow // 元数据中存放数据的起始位置 kvindex = (int) (((long)aligned - METASIZE + kvbuffer.length) % kvbuffer.length) / 4; LOG.info("(EQUATOR) " + pos + " kvi " + kvindex + "(" + (kvindex * 4) + ")"); }

buffer初始化之后的抽象数据结构如下图所示: 环形缓冲区数据结构图

环形缓冲区数据结构图

写入buffer

Map通过NewOutputCollector.write方法调用collector.collect向buffer中写入数据,数据写入之前已在NewOutputCollector.write中对要写入的数据进行逐条分区,下面看下collect

// MapOutputBuffer.collect public synchronized void collect(K key, V value, final int partition ) throws IOException { ... // 新数据collect时,先将剩余的空间减去元数据的长度,之后进行判断 bufferRemaining -= METASIZE; if (bufferRemaining <= 0) { // start spill if the thread is not running and the soft limit has been // reached spillLock.lock(); try { do { // 首次spill时,spillInProgress是false if (!spillInProgress) { // 得到kvindex的byte位置 final int kvbidx = 4 * kvindex; // 得到kvend的byte位置 final int kvbend = 4 * kvend; // serialized, unspilled bytes always lie between kvindex and // bufindex, crossing the equator. Note that any void space // created by a reset must be included in "used" bytes final int bUsed = distanceTo(kvbidx, bufindex); final boolean bufsoftlimit = bUsed >= softLimit; if ((kvbend + METASIZE) % kvbuffer.length != equator - (equator % METASIZE)) { // spill finished, reclaim space resetSpill(); bufferRemaining = Math.min( distanceTo(bufindex, kvbidx) - 2 * METASIZE, softLimit - bUsed) - METASIZE; continue; } else if (bufsoftlimit && kvindex != kvend) { // spill records, if any collected; check latter, as it may // be possible for metadata alignment to hit spill pcnt startSpill(); final int avgRec = (int) (mapOutputByteCounter.getCounter() / mapOutputRecordCounter.getCounter()); // leave at least half the split buffer for serialization data // ensure that kvindex >= bufindex final int distkvi = distanceTo(bufindex, kvbidx); final int newPos = (bufindex + Math.max(2 * METASIZE - 1, Math.min(distkvi / 2, distkvi / (METASIZE + avgRec) * METASIZE))) % kvbuffer.length; setEquator(newPos); bufmark = bufindex = newPos; final int serBound = 4 * kvend; // bytes remaining before the lock must be held and limits // checked is the minimum of three arcs: the metadata space, the // serialization space, and the soft limit bufferRemaining = Math.min( // metadata max distanceTo(bufend, newPos), Math.min( // serialization max distanceTo(newPos, serBound), // soft limit softLimit)) - 2 * METASIZE; } } } while (false); } finally { spillLock.unlock(); } } // 将key value 及元数据信息写入缓冲区 try { // serialize key bytes into buffer int keystart = bufindex; // 将key序列化写入kvbuffer中,并移动bufindex keySerializer.serialize(key); // key所占空间被bufvoid分隔,则移动key, // 将其值放在连续的空间中便于sort时key的对比 if (bufindex < keystart) { // wrapped the key; must make contiguous bb.shiftBufferedKey(); keystart = 0; } // serialize value bytes into buffer final int valstart = bufindex; valSerializer.serialize(value); // It's possible for records to have zero length, i.e. the serializer // will perform no writes. To ensure that the boundary conditions are // checked and that the kvindex invariant is maintained, perform a // zero-length write into the buffer. The logic monitoring this could be // moved into collect, but this is cleaner and inexpensive. For now, it // is acceptable. bb.write(b0, 0, 0);

// the record must be marked after the preceding write, as the metadata
// for this record are not yet written
int valend = bb.markRecord();

mapOutputRecordCounter.increment(1);
mapOutputByteCounter.increment(
    distanceTo(keystart, valend, bufvoid));

// write accounting info
kvmeta.put(kvindex + PARTITION, partition);
kvmeta.put(kvindex + KEYSTART, keystart);
kvmeta.put(kvindex + VALSTART, valstart);
kvmeta.put(kvindex + VALLEN, distanceTo(valstart, valend));
// advance kvindex
kvindex = (kvindex - NMETA + kvmeta.capacity()) % kvmeta.capacity();

} catch (MapBufferTooSmallException e) { LOG.info("Record too large for in-memory buffer: " + e.getMessage()); spillSingleRecord(key, value, partition); mapOutputRecordCounter.increment(1); return; } } 每次写入数据时,执行bufferRemaining -= METASIZE之后,检查bufferRemaining,

如果大于0,直接将key/value序列化对和对应的meta写入buffer中,key/value是序列化之后写入的,key/value经过一些列的方法调用Serializer.serialize(key/value) -> WritableSerializer.serialize(key/value) -> BytesWritable.write(dataOut) -> DataOutputStream.write(bytes, 0, size) -> MapOutputBuffer.Buffer.write(b, off, len),最后由MapOutputBuffer.Buffer.write(b, off, len)将数据写入kvbuffer中,write方法如下:

public void write(byte b[], int off, int len) throws IOException { // must always verify the invariant that at least METASIZE bytes are // available beyond kvindex, even when len == 0 bufferRemaining -= len; if (bufferRemaining <= 0) { // writing these bytes could exhaust available buffer space or fill // the buffer to soft limit. check if spill or blocking are necessary boolean blockwrite = false; spillLock.lock(); try { do { checkSpillException();

    final int kvbidx = 4 * kvindex;
    final int kvbend = 4 * kvend;
    // ser distance to key index
    final int distkvi = distanceTo(bufindex, kvbidx);
    // ser distance to spill end index
    final int distkve = distanceTo(bufindex, kvbend);

    // if kvindex is closer than kvend, then a spill is neither in
    // progress nor complete and reset since the lock was held. The
    // write should block only if there is insufficient space to
    // complete the current write, write the metadata for this record,
    // and write the metadata for the next record. If kvend is closer,
    // then the write should block if there is too little space for
    // either the metadata or the current write. Note that collect
    // ensures its metadata requirement with a zero-length write
    blockwrite = distkvi &lt;= distkve
      ? distkvi &lt;= len + 2 * METASIZE
      : distkve &lt;= len || distanceTo(bufend, kvbidx) &lt; 2 * METASIZE;

    if (!spillInProgress) {
      if (blockwrite) {
        if ((kvbend + METASIZE) % kvbuffer.length !=
            equator - (equator % METASIZE)) {
          // spill finished, reclaim space
          // need to use meta exclusively; zero-len rec &amp; 100% spill
          // pcnt would fail
          resetSpill(); // resetSpill doesn't move bufindex, kvindex
          bufferRemaining = Math.min(
              distkvi - 2 * METASIZE,
              softLimit - distanceTo(kvbidx, bufindex)) - len;
          continue;
        }
        // we have records we can spill; only spill if blocked
        if (kvindex != kvend) {
          startSpill();
          // Blocked on this write, waiting for the spill just
          // initiated to finish. Instead of repositioning the marker
          // and copying the partial record, we set the record start
          // to be the new equator
          setEquator(bufmark);
        } else {
          // We have no buffered records, and this record is too large
          // to write into kvbuffer. We must spill it directly from
          // collect
          final int size = distanceTo(bufstart, bufindex) + len;
          setEquator(0);
          bufstart = bufend = bufindex = equator;
          kvstart = kvend = kvindex;
          bufvoid = kvbuffer.length;
          throw new MapBufferTooSmallException(size + " bytes");
        }
      }
    }

    if (blockwrite) {
      // wait for spill
      try {
        while (spillInProgress) {
          reporter.progress();
          spillDone.await();
        }
      } catch (InterruptedException e) {
          throw new IOException(
              "Buffer interrupted while waiting for the writer", e);
      }
    }
  } while (blockwrite);
} finally {
  spillLock.unlock();
}

} // here, we know that we have sufficient space to write if (bufindex + len > bufvoid) { final int gaplen = bufvoid - bufindex; System.arraycopy(b, off, kvbuffer, bufindex, gaplen); len -= gaplen; off += gaplen; bufindex = 0; } System.arraycopy(b, off, kvbuffer, bufindex, len); bufindex += len; } write方法将key/value写入kvbuffer中,如果bufindex+len超过了bufvoid,则将写入的内容分开存储,将一部分写入bufindex和bufvoid之间,然后重置bufindex,将剩余的部分写入,这里不区分key和value,写入key之后会在collect中判断bufindex < keystart,当bufindex小时,则key被分开存储,执行bb.shiftBufferedKey(),value则直接写入,不用判断是否被分开存储,key不能分开存储是因为要对key进行排序。

这里需要注意的是要写入的数据太长,并且kvinde==kvend,则抛出MapBufferTooSmallException异常,在collect中捕获,将此数据直接spill到磁盘spillSingleRecord,也就是当单条记录过长时,不写buffer,直接写入磁盘。

下面看下bb.shiftBufferedKey()代码

// BlockingBuffer.shiftBufferedKey protected void shiftBufferedKey() throws IOException { // spillLock unnecessary; both kvend and kvindex are current int headbytelen = bufvoid - bufmark; bufvoid = bufmark; final int kvbidx = 4 * kvindex; final int kvbend = 4 * kvend; final int avail = Math.min(distanceTo(0, kvbidx), distanceTo(0, kvbend)); if (bufindex + headbytelen < avail) { System.arraycopy(kvbuffer, 0, kvbuffer, headbytelen, bufindex); System.arraycopy(kvbuffer, bufvoid, kvbuffer, 0, headbytelen); bufindex += headbytelen; bufferRemaining -= kvbuffer.length - bufvoid; } else { byte[] keytmp = new byte[bufindex]; System.arraycopy(kvbuffer, 0, keytmp, 0, bufindex); bufindex = 0; out.write(kvbuffer, bufmark, headbytelen); out.write(keytmp); } } shiftBufferedKey时,判断首部是否有足够的空间存放key,有没有足够的空间,则先将首部的部分key写入keytmp中,然后分两次写入,再次调用Buffer.write,如果有足够的空间,分两次copy,先将首部的部分key复制到headbytelen的位置,然后将末尾的部分key复制到首部,移动bufindex,重置bufferRemaining的值。

key/value写入之后,继续写入元数据信息并重置kvindex的值。

spill

一次写入buffer结束,当写入数据比较多,bufferRemaining小于等于0时,准备进行spill,首次spill,spillInProgress为false,此时查看bUsed = distanceTo(kvbidx, bufindex),此时bUsed >= softLimit 并且 (kvbend + METASIZE) % kvbuffer.length == equator - (equator % METASIZE),则进行spill,调用startSpill

private void startSpill() { // 元数据的边界赋值 kvend = (kvindex + NMETA) % kvmeta.capacity(); // key/value的边界赋值 bufend = bufmark; // 设置spill运行标识 spillInProgress = true; ... // 利用重入锁,对spill线程进行唤醒 spillReady.signal(); } startSpill唤醒spill线程之后,进程spill操作,但此时map向buffer的写入操作并没有阻塞,需要重新边界equator和bufferRemaining的值,先来看下equator和bufferRemaining值的设定:

// 根据已经写入的kv得出每个record的平均长度 final int avgRec = (int) (mapOutputByteCounter.getCounter() / mapOutputRecordCounter.getCounter()); // leave at least half the split buffer for serialization data // ensure that kvindex >= bufindex // 得到空余空间的大小 final int distkvi = distanceTo(bufindex, kvbidx); // 得出新equator的位置 final int newPos = (bufindex + Math.max(2 * METASIZE - 1, Math.min(distkvi / 2, distkvi / (METASIZE + avgRec) * METASIZE))) % kvbuffer.length; setEquator(newPos); bufmark = bufindex = newPos; final int serBound = 4 * kvend; // bytes remaining before the lock must be held and limits // checked is the minimum of three arcs: the metadata space, the // serialization space, and the soft limit bufferRemaining = Math.min( // metadata max distanceTo(bufend, newPos), Math.min( // serialization max distanceTo(newPos, serBound), // soft limit softLimit)) - 2 * METASIZE;

因为equator是kvbuffer和kvmeta的分界线,为了更多的空间存储kv,则最多拿出distkvi的一半来存储meta,并且利用avgRec估算distkvi能存放多少个record和meta对,根据record和meta对的个数估算meta所占空间的大小,从distkvi/2和meta所占空间的大小中取最小值,又因为distkvi中最少得存放一个meta,所占空间为METASIZE,在选取kvindex时需要求aligned,aligned最多为METASIZE-1,总和上述因素,最终选取equator为(bufindex + Math.max(2 * METASIZE - 1, Math.min(distkvi / 2, distkvi / (METASIZE + avgRec) * METASIZE)))。equator选取之后,设置bufmark = bufindex = newPos和kvindex,但此时并不设置bufstart、bufend和kvstart、kvend,因为这几个值要用来表示spill数据的边界。

spill之后,可用的空间减少了,则控制spill的bufferRemaining也应该重新设置,bufferRemaining取三个值的最小值减去2METASIZE,三个值分别是meta可用占用的空间distanceTo(bufend, newPos),kv可用空间distanceTo(newPos, serBound)和softLimit。这里为什么要减去2METASIZE,一个是spill之前kvend到kvindex的距离,另一个是当时的kvindex空间????此时,已有一个record要写入buffer,需要从bufferRemaining中减去当前record的元数据占用的空间,即减去METASIZE,另一个METASIZE是在计算equator时,没有包括kvindex到kvend(spill之前)的这段METASIZE,所以要减去这个METASIZE。

接下来解析下SpillThread线程,查看其run方法:

public void run() { spillLock.lock(); spillThreadRunning = true; try { while (true) { spillDone.signal(); // 判断是否在spill,false则挂起SpillThread线程,等待唤醒 while (!spillInProgress) { spillReady.await(); } try { spillLock.unlock(); // 唤醒之后,进行排序和溢写到磁盘 sortAndSpill(); } catch (Throwable t) { sortSpillException = t; } finally { spillLock.lock(); if (bufend < bufstart) { bufvoid = kvbuffer.length; } kvstart = kvend; bufstart = bufend; spillInProgress = false; } } } catch (InterruptedException e) { Thread.currentThread().interrupt(); } finally { spillLock.unlock(); spillThreadRunning = false; } }

run中主要是sortAndSpill,

private void sortAndSpill() throws IOException, ClassNotFoundException, InterruptedException { //approximate the length of the output file to be the length of the //buffer + header lengths for the partitions final long size = distanceTo(bufstart, bufend, bufvoid) + partitions * APPROX_HEADER_LENGTH; FSDataOutputStream out = null; try { // create spill file // 用来存储index文件 final SpillRecord spillRec = new SpillRecord(partitions); // 创建写入磁盘的spill文件 final Path filename = mapOutputFile.getSpillFileForWrite(numSpills, size); // 打开文件流 out = rfs.create(filename); // kvend/4 是截止到当前位置能存放多少个元数据实体 final int mstart = kvend / NMETA; // kvstart 处能存放多少个元数据实体 // 元数据则在mstart和mend之间,(mstart - mend)则是元数据的个数 final int mend = 1 + // kvend is a valid record (kvstart >= kvend ? kvstart : kvmeta.capacity() + kvstart) / NMETA; // 排序 只对元数据进行排序,只调整元数据在kvmeta中的顺序 // 排序规则是MapOutputBuffer.compare, // 先对partition进行排序其次对key值排序 sorter.sort(MapOutputBuffer.this, mstart, mend, reporter); int spindex = mstart; // 创建rec,用于存放该分区在数据文件中的信息 final IndexRecord rec = new IndexRecord(); final InMemValBytes value = new InMemValBytes(); for (int i = 0; i < partitions; ++i) { // 临时文件是IFile格式的 IFile.Writer<k, v> writer = null; try { long segmentStart = out.getPos(); FSDataOutputStream partitionOut = CryptoUtils.wrapIfNecessary(job, out); writer = new Writer<k, v>(job, partitionOut, keyClass, valClass, codec, spilledRecordsCounter); // 往磁盘写数据时先判断是否有combiner if (combinerRunner == null) { // spill directly DataInputBuffer key = new DataInputBuffer(); // 写入相同partition的数据 while (spindex < mend && kvmeta.get(offsetFor(spindex % maxRec) + PARTITION) == i) { final int kvoff = offsetFor(spindex % maxRec); int keystart = kvmeta.get(kvoff + KEYSTART); int valstart = kvmeta.get(kvoff + VALSTART); key.reset(kvbuffer, keystart, valstart - keystart); getVBytesForOffset(kvoff, value); writer.append(key, value); ++spindex; } } else { int spstart = spindex; while (spindex < mend && kvmeta.get(offsetFor(spindex % maxRec) + PARTITION) == i) { ++spindex; } // Note: we would like to avoid the combiner if we've fewer // than some threshold of records for a partition if (spstart != spindex) { combineCollector.setWriter(writer); RawKeyValueIterator kvIter = new MRResultIterator(spstart, spindex); combinerRunner.combine(kvIter, combineCollector); } }

    // close the writer
    writer.close();

    // record offsets
    // 记录当前partition i的信息写入索文件rec中
    rec.startOffset = segmentStart;
    rec.rawLength = writer.getRawLength() + CryptoUtils.cryptoPadding(job);
    rec.partLength = writer.getCompressedLength() + CryptoUtils.cryptoPadding(job);
    // spillRec中存放了spill中partition的信息,便于后续堆排序时,取出partition相关的数据进行排序
    spillRec.putIndex(rec, i);

    writer = null;
  } finally {
    if (null != writer) writer.close();
  }
}
// 判断内存中的index文件是否超出阈值,超出则将index文件写入磁盘
// 当超出阈值时只是把当前index和之后的index写入磁盘
if (totalIndexCacheMemory &gt;= indexCacheMemoryLimit) {
  // create spill index file
  // 创建index文件
  Path indexFilename =
      mapOutputFile.getSpillIndexFileForWrite(numSpills, partitions
          * MAP_OUTPUT_INDEX_RECORD_LENGTH);
  spillRec.writeToFile(indexFilename, job);
} else {
  indexCacheList.add(spillRec);
  totalIndexCacheMemory +=
    spillRec.size() * MAP_OUTPUT_INDEX_RECORD_LENGTH;
}
LOG.info("Finished spill " + numSpills);
++numSpills;

} finally { if (out != null) out.close(); } } sortAndSpill中,有mstart和mend得到一共有多少条record需要spill到磁盘,调用sorter.sort对meta进行排序,先对partition进行排序,然后按key排序,排序的结果只调整meta的顺序。

排序之后,判断是否有combiner,没有则直接将record写入磁盘,写入时是一个partition一个IndexRecord,如果有combiner,则将该partition的record写入kvIter,然后调用combinerRunner.combine执行combiner。

写入磁盘之后,将spillx.out对应的spillRec放入内存indexCacheList.add(spillRec),如果所占内存totalIndexCacheMemory超过了indexCacheMemoryLimit,则创建index文件,将此次及以后的spillRec写入index文件存入磁盘。

最后spill次数递增。sortAndSpill结束之后,回到run方法中,执行finally中的代码,对kvstart和bufstart赋值,kvstart = kvend,bufstart = bufend,设置spillInProgress的状态为false。

在spill的同时,map往buffer的写操作并没有停止,依然在调用collect,再次回到collect方法中,

// MapOutputBuffer.collect public synchronized void collect(K key, V value, final int partition ) throws IOException { ... // 新数据collect时,先将剩余的空间减去元数据的长度,之后进行判断 bufferRemaining -= METASIZE; if (bufferRemaining <= 0) { // start spill if the thread is not running and the soft limit has been // reached spillLock.lock(); try { do { // 首次spill时,spillInProgress是false if (!spillInProgress) { // 得到kvindex的byte位置 final int kvbidx = 4 * kvindex; // 得到kvend的byte位置 final int kvbend = 4 * kvend; // serialized, unspilled bytes always lie between kvindex and // bufindex, crossing the equator. Note that any void space // created by a reset must be included in "used" bytes final int bUsed = distanceTo(kvbidx, bufindex); final boolean bufsoftlimit = bUsed >= softLimit; if ((kvbend + METASIZE) % kvbuffer.length != equator - (equator % METASIZE)) { // spill finished, reclaim space resetSpill(); bufferRemaining = Math.min( distanceTo(bufindex, kvbidx) - 2 * METASIZE, softLimit - bUsed) - METASIZE; continue; } else if (bufsoftlimit && kvindex != kvend) { ... } } } while (false); } finally { spillLock.unlock(); } } ... } 有新的record需要写入buffer时,判断bufferRemaining -= METASIZE,此时的bufferRemaining是在开始spill时被重置过的(此时的bufferRemaining应该比初始的softLimit要小),当bufferRemaining小于等最后一个METASIZE是当前record进入collect之后bufferRemaining减去的那个METASIZE。

于0时,进入if,此时spillInProgress的状态为false,进入if (!spillInProgress),startSpill时对kvend和bufend进行了重置,则此时(kvbend + METASIZE) % kvbuffer.length != equator - (equator % METASIZE),调用resetSpill(),将kvstart、kvend和bufstart、bufend设置为上次startSpill时的位置。此时buffer已将一部分内容写入磁盘,有大量空余的空间,则对bufferRemaining进行重置,此次不spill。

bufferRemaining取值为Math.min(distanceTo(bufindex, kvbidx) - 2 * METASIZE, softLimit - bUsed) - METASIZE

private void resetSpill() { final int e = equator; bufstart = bufend = e; final int aligned = e - (e % METASIZE); // set start/end to point to first meta record // Cast one of the operands to long to avoid integer overflow kvstart = kvend = (int) (((long)aligned - METASIZE + kvbuffer.length) % kvbuffer.length) / 4; LOG.info("(RESET) equator " + e + " kv " + kvstart + "(" + (kvstart * 4) + ")" + " kvi " + kvindex + "(" + (kvindex * 4) + ")"); }

当bufferRemaining再次小于等于0时,进行spill,这以后就都是套路了。环形缓冲区分析到此结束。

声明:本号所有文章除特殊注明,都为原创,公众号读者拥有优先阅读权,未经作者本人允许不得转载,否则追究侵权责任。

关注我的公众号,后台回复【JAVAPDF】获取200页面试题! 5万人关注的大数据成神之路,不来了解一下吗? 5万人关注的大数据成神之路,真的不来了解一下吗? 5万人关注的大数据成神之路,确定真的不来了解一下吗?

欢迎您关注《大数据成神之路》

大数据技术与架构</k,></k,></v></k>

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!