多线程和多进程概述:当计算机运行程序时,就会创建包含代码和状态的进程。这些进程会通过计算机的一个或多个CPU执行。不过,同一时刻一个CPU只能执行一个进程,然后在不同进程间快速切换,这样就给人以多个程序同时运行的感觉。同理,在一个进程中,程序的执行也是在不同线程间进行切换的,每个线程执行程序的不同部分。例如,一个工厂(网络爬虫)有多个车间(进程)负责不同的功能,一个车间又有多个车间工人(线程)协同合作,效率大大提升。
from multiprocessing import Pool pool=Pool(processes= num)#创建进程池,num为进程个数 pool.map(func,iterable)#func为爬虫函数,iterable为迭代参数,爬虫中,可为多个url列表进行迭代
实例:爬取酷狗歌单(做测试只返回不储存)
import requests #用于请求网页获取网页数据
from bs4 import BeautifulSoup #解析网页数据
import time #time库中的sleep()方法可以让程序暂停
import csv
from multiprocessing import Pool
'''
爬虫测试_多进程
酷狗top500数据
写入csv文件
'''
'''
fp = open('D://kugou.csv','wt',newline='',encoding='utf-8')#创建csv
writer = csv.writer(fp)
writer.writerow(('rank','singer','song','time'))
'''
#加入请求头
headers = {
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36'
}
#定义获取信息的函数
def get_info(url):
wb_data = requests.get(url,headers=headers)#get方法加入请求头
soup = BeautifulSoup(wb_data.text,'html.parser')#对返回结果进行解析
#定位元素位置并通过selector方法获取
ranks = soup.select('span.pc_temp_num')
titles = soup.select('div.pc_temp_songlist > ul > li > a')
times = soup.select('span.pc_temp_tips_r > span')
for rank,title,time in zip(ranks,titles,times):
data = {
'rank':rank.get_text().strip(),
'singer':title.get_text().split('-')[0],
'song':title.get_text().split('-')[0],#通过split获取歌手和歌曲信息
'time':time.get_text().strip()#get_text()获取文本内容
}
#writer.writerow((rank.get_text().strip(),title.get_text().split('-')[0],title.get_text().split('-')[0],time.get_text().strip()))
# 获取爬取信息并按字典格式打印
#print(data)
return data
#程序主入口
if __name__ == '__main__':
urls = ['http://www.kugou.com/yy/rank/home/{}-8888.html'.format(str(i)) for i in range(1,50)]#构造多页url
start1=time.time()
for url in urls:
get_info(url)#循环调用
#time.sleep(1)#每循环一次,睡眠1秒,防止网页浏览频率过快导致爬虫失败
end1=time.time()
print('串行爬虫用时',end1-start1)
start2 = time.time()
pool=Pool(processes= 2)#创建进程池
pool.map(get_info,urls)
pool.close()
end2 = time.time()
print('两个进程用时', end2 - start2)
start3 = time.time()
pool = Pool(processes=4)
pool.map(get_info, urls)
pool.close()
end3 = time.time()
print('四个进程用时', end3 - start3)
运行结果:

页数越多,效果越明显:
urls = ['http://www.kugou.com/yy/rank/home/{}-8888.html'.format(str(i)) for i in range(1,500)]

改为爬取10页:
urls = ['http://www.kugou.com/yy/rank/home/{}-8888.html'.format(str(i)) for i in range(1,10)]

页数少的情况下,完全没必要开启多进程
来源:https://www.cnblogs.com/sengzhao666/p/12356363.html