二进制枚举

北战南征 提交于 2020-02-22 21:19:27

二进制枚举

对于一个集合子集有\(2^n\)个,所以枚举有\((1 << n)\)

for(int i = 0; i < (1 << n); i++)

在二进制里0表示不选,1表示选

当n = 3时,集合有\({0,1,2,01,02,12,012}\)七种选择

\(i = 0\)时,不选

\(i = 1\)时,\(001\)只选择最后一行就是0

\(i = 2\)时,\(010\)只选择倒数第二个,就是1

\(i = 3\)时,\(011\)选择倒数两个,就是0和1

\(...\)

\(i = 7\)时,111选择全部,就是0,1,2

这样正好对应\(n = 3\)时的8个状态

那么问题就是如何使得选择对于数字的二进制呢

相当于对于i = 一个值时,枚举n位,看看哪位是1,是的话就输出

for(int i = 0; i < (1 << n); i++){
    for(int j = 0; j < n; j++){
        if(i & (1 << j))
    }
}

如果\(i = 6\)对应二进制是\(110\),而此时枚举j为0,1,2,把它进行\((1 << j)\)后为\(001,010,100\)如何与i和取,如果是1,那么就是选择的条件

时间复杂度

\(O(2^n * n)\)

所以\(n<20\)时可以进行枚举

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!