要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识。
Unix/Linux操作系统提供了一个fork()
系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()
调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。
子进程永远返回0
,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()
就可以拿到父进程的ID。
Python的os
模块封装了常见的系统调用,其中就包括fork
,可以在Python程序中轻松创建子进程:
import os print('Process (%s) start...' % os.getpid()) # Only works on Unix/Linux/Mac: pid = os.fork() if pid == 0: print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid())) else: print('I (%s) just created a child process (%s).' % (os.getpid(), pid))
运行结果如下:
Process (876) start... I (876) just created a child process (877). I am child process (877) and my parent is 876.
由于Windows没有fork
调用,上面的代码在Windows上无法运行。由于Mac系统是基于BSD(Unix的一种)内核,所以,在Mac下运行是没有问题的,推荐大家用Mac学Python!
有了fork
调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。
multiprocessing
如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有fork
调用,难道在Windows上无法用Python编写多进程的程序?
由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing
模块就是跨平台版本的多进程模块。
multiprocessing
模块提供了一个Process
类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:
from multiprocessing import Processimport osimport timeimport random# 子进程要执行的代码def run_childprocess(name): print(time.ctime()) print('%s(id:%s)购买成功' % (name,os.getpid()))if __name__ == '__main__': print('mainprocess,父进程%s' % os.getpid()) p = Process(target=run_childprocess,args=('大娃',)) p2 = Process(target=run_childprocess,args=('金刚娃',)) p3 = Process(target=run_childprocess,args=('水娃',)) p4 = Process(target=run_childprocess,args=('火娃',)) print('All children process will start.') p.start() p2.start() p3.start() p4.start() p.join() print('Child process end.') #如果要启动大量的进程,应该用进程池
Pool
如果要启动大量的子进程,可以用进程池的方式批量创建子进程:
from multiprocessing import Poolimport multiprocessing
import osimport timeimport randomdef run_childprocess(name): print(time.ctime()) print('%s(id:%s)购买成功' % (name,os.getpid()))
if __name__ == '__main__': print('main主进程 process %s.' % os.getpid()) print(multiprocessing.cpu_count()) #可以知道丐太电脑有多少个进程 p = Pool(multiprocessing.cpu_count()) # multiprocessing.cpu_count() 可以知道电脑cpu有多少核,一个核一个进程. namelist = ['大娃','金刚娃','火娃','水娃','隐身娃','天真娃'] for i in range(6): p.apply_async(run_childprocess,args=(namelist[i],))
p.map_async(run_childprocess,namelist) #也可以这样写
print('Waiting for all subprocesses done...') p.close() p.join() print('All subprocesses done.')
对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。
子进程
很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。
subprocess
模块可以让我们非常方便地启动一个子进程,然后控制其输入和输出。
下面的例子演示了如何在Python代码中运行命令nslookup www.python.org
,这和命令行直接运行的效果是一样的:
import subprocess print('$ nslookup www.python.org') r = subprocess.call(['nslookup', 'www.python.org']) print('Exit code:', r)
运行结果:
$ nslookup www.python.org Server: 192.168.19.4 Address: 192.168.19.4#53 Non-authoritative answer: www.python.org canonical name = python.map.fastly.net. Name: python.map.fastly.net Address: 199.27.79.223 Exit code: 0
子进程
很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。
subprocess
模块可以让我们非常方便地启动一个子进程,然后控制其输入和输出。
下面的例子演示了如何在Python代码中运行命令nslookup www.python.org
,这和命令行直接运行的效果是一样的:
import subprocess print('$ nslookup www.python.org') r = subprocess.call(['nslookup', 'www.python.org']) print('Exit code:', r)
运行结果:
$ nslookup www.python.org Server: 192.168.19.4 Address: 192.168.19.4#53 Non-authoritative answer: www.python.org canonical name = python.map.fastly.net. Name: python.map.fastly.net Address: 199.27.79.223 Exit code: 0
如果子进程还需要输入,则可以通过communicate()
方法输入:
import subprocess print('$ nslookup') p = subprocess.Popen(['nslookup'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, err = p.communicate(b'set q=mx\npython.org\nexit\n') print(output.decode('utf-8')) print('Exit code:', p.returncode)
上面的代码相当于在命令行执行命令nslookup
,然后手动输入:
set q=mx python.org exit
运行结果如下:
$ nslookup Server: 192.168.19.4 Address: 192.168.19.4#53 Non-authoritative answer: python.org mail exchanger = 50 mail.python.org. Authoritative answers can be found from: mail.python.org internet address = 82.94.164.166 mail.python.org has AAAA address 2001:888:2000:d::a6 Exit code: 0
进程间通信
Process
之间肯定是需要通信的,操作系统提供了很多机制来实现进程间的通信。Python的multiprocessing
模块包装了底层的机制,提供了Queue
、Pipes
等多种方式来交换数据。
我们以Queue
为例,在父进程中创建两个子进程,一个往Queue
里写数据,一个从Queue
里读数据:
from multiprocessing import Process, Queue import os, time, random # 写数据进程执行的代码: def write(q): print('Process to write: %s' % os.getpid()) for value in ['A', 'B', 'C']: print('Put %s to queue...' % value) q.put(value) time.sleep(random.random()) # 读数据进程执行的代码: def read(q): print('Process to read: %s' % os.getpid()) while True: value = q.get(True) print('Get %s from queue.' % value) if __name__=='__main__': # 父进程创建Queue,并传给各个子进程: q = Queue() pw = Process(target=write, args=(q,)) pr = Process(target=read, args=(q,)) # 启动子进程pw,写入: pw.start() # 启动子进程pr,读取: pr.start() # 等待pw结束: pw.join() # pr进程里是死循环,无法等待其结束,只能强行终止: pr.terminate()
运行结果如下:
Process to write: 50563 Put A to queue... Process to read: 50564 Get A from queue. Put B to queue... Get B from queue. Put C to queue... Get C from queue.
在Unix/Linux下,multiprocessing
模块封装了fork()
调用,使我们不需要关注fork()
的细节。由于Windows没有fork
调用,因此,multiprocessing
需要“模拟”出fork
的效果,父进程所有Python对象都必须通过pickle序列化再传到子进程去,所有,如果multiprocessing
在Windows下调用失败了,要先考虑是不是pickle失败了。
来源:https://www.cnblogs.com/xiangqianzou/p/7008033.html