python实现-回归分析
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error,r2_score
data = pd.read_csv('/Users/huangqiankun/Downloads/汽车销售数据.csv')
data.head()
data.isnull().any()
data = data.dropna()
X = data.iloc[:,3:]
Y = data.iloc[:,2]
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size = 0.2,random_state = 1234)
ss = StandardScaler()
ss.fit(x_train)
x_train_ss = ss.transform(x_train)
x_test_ss = ss.transform(x_test)
lr = LinearRegression()
lr.fit(x_train_ss,y_train)
out:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
lr.coef_
out:
array([-14.97630252, 2.32553882, 1.41436362, 237.23659298,
3.42730138, 1.80472323, -4.99775286])
lr.intercept_
out:
430.7574509803923
y_pred = lr.predict(x_test_ss)
mean_squared_error(y_test,y_pred)
out:
19.500348658914437
r2_score(y_test,y_pred)
out:
0.9995192568677627
来源:CSDN
作者:yxjwhhhh
链接:https://blog.csdn.net/yxjwhhhh/article/details/104348778