此文源于在opencv学堂上看到的一篇文章,自己尝试了下,
首先安装opencv4,在OpenCV的\sources\samples\dnn\face_detector目录下,有一个download_weights.py脚本文件,首先运行一下,下载模型文件。下载的模型文件分别为:
Caffe模型
res10_300x300_ssd_iter_140000_fp16.caffemodel
deploy.prototxt
tensorflow模型
opencv_face_detector_uint8.pb
opencv_face_detector.pbtxt
下面为自己在visual sutio2019中的测试代码,
#include <opencv2/dnn.hpp>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace cv::dnn;
#include <iostream>
#include <cstdlib>
using namespace std;
const size_t inWidth = 300;
const size_t inHeight = 300;
const double inScaleFactor = 1.0;
const Scalar meanVal(104.0, 177.0, 123.0);
const float confidenceThreshold = 0.6;
void face_detect_dnn();
void mtcnn_demo();
int main(int argc, char** argv)
{
face_detect_dnn();
waitKey(0);
return 0;
}
void face_detect_dnn() {
//String modelDesc = "D:/projects/opencv_tutorial/data/models/resnet/deploy.prototxt";
// String modelBinary = "D:/projects/opencv_tutorial/data/models/resnet/res10_300x300_ssd_iter_140000.caffemodel";
//String modelBinary = "D:/opencv-4.2.0/opencv/sources/samples/dnn/face_detector/opencv_face_detector_uint8.pb";
//String modelDesc = "D:/opencv-4.2.0/opencv/sources/samples/dnn/face_detector/opencv_face_detector.pbtxt";
String modelBinary = "E:/opencv_4_2_0_is_installed_here/opencv/sources/samples/dnn/face_detector/opencv_face_detector_uint8.pb";
String modelDesc = "E:/opencv_4_2_0_is_installed_here/opencv/sources/samples/dnn/face_detector/opencv_face_detector.pbtxt";
// 初始化网络
// dnn::Net net = readNetFromCaffe(modelDesc, modelBinary);
dnn::Net net = readNetFromTensorflow(modelBinary, modelDesc);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
net.setPreferableTarget(DNN_TARGET_CPU);
if (net.empty())
{
printf("could not load net...\n");
return;
}
#if 0
// 打开摄像头
// VideoCapture capture(0);
VideoCapture capture("D:/images/video/Boogie_Up.mp4");
if (!capture.isOpened()) {
printf("could not load camera...\n");
return;
}
#endif
Mat frame;
int count = 0;
char imagePath[100] = {};
char outPath[100] = {};
//while (capture.read(frame))
for (int i = 0; i < 81; i++)
{
waitKey(100);
sprintf_s(imagePath, "E:/opencv_4_2_0_is_installed_here/opencv/sources/samples/dnn/face_detector/%d.jpg", i);
printf("imagePath:%s\n", imagePath);
//frame = cv::imread("E:/opencv_4_2_0_is_installed_here/opencv/sources/samples/dnn/face_detector/0.jpg");
frame = cv::imread(imagePath);
if (frame.empty())
{
printf("read test jpg error\n");
}
else
{
int64 start = getTickCount();
#if 0
if (frame.empty())
{
break;
}
#endif
// 水平镜像调整
// flip(frame, frame, 1);
imshow("input", frame);
if (frame.channels() == 4)
cvtColor(frame, frame, COLOR_BGRA2BGR);
// 输入数据调整
Mat inputBlob = blobFromImage(frame, inScaleFactor,
Size(inWidth, inHeight), meanVal, false, false);
net.setInput(inputBlob, "data");
// 人脸检测
Mat detection = net.forward("detection_out");
vector<double> layersTimings;
double freq = getTickFrequency() / 1000;
double time = net.getPerfProfile(layersTimings) / freq;
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
ostringstream ss;
for (int i = 0; i < detectionMat.rows; i++)
{
// 置信度 0~1之间
float confidence = detectionMat.at<float>(i, 2);
if (confidence > confidenceThreshold)
{
count++;
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);
Rect object((int)xLeftBottom, (int)yLeftBottom,
(int)(xRightTop - xLeftBottom),
(int)(yRightTop - yLeftBottom));
rectangle(frame, object, Scalar(0, 255, 0));
ss << confidence;
String conf(ss.str());
String label = "Face: " + conf;
int baseLine = 0;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height),
Size(labelSize.width, labelSize.height + baseLine)),
Scalar(255, 255, 255), FILLED);
putText(frame, label, Point(xLeftBottom, yLeftBottom),
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));
}
}
float fps = getTickFrequency() / (getTickCount() - start);
ss.str("");
ss << "FPS: " << fps << " ; inference time: " << time << " ms";
putText(frame, ss.str(), Point(20, 20), 0, 0.75, Scalar(0, 0, 255), 2, 8);
imshow("dnn_face_detection", frame);
sprintf_s(outPath, "E:/opencv_4_2_0_is_installed_here/opencv/sources/samples/dnn/face_detector/out%d.jpg", i);
imwrite(outPath, frame);
//if (waitKey(1) >= 0) break;
if (waitKey(1) >= 0) return;
}
printf("total face: %d\n", count);
}
}
来源:https://www.cnblogs.com/cumtchw/p/12312280.html