Pytorch之线性回归
线性回归原理
-
加载数据
feature = 2 samples = 1000 # 设置参数 true_w = [2, -3.4] true_b = 4.2 # 生成数据 data = t.randn(samples, feature, dtype=t.float32) labels = true_w[0] * data[:, 0] + true_w[1] * data[:, 1] + true_b # 数据添加噪声 labels += t.tensor(np.random.normal(0, 0.01, size = labels.size()), dtype=t.float32) def data_iter(batch_size, features, labels): """数据的读取""" num_examples = len(features) indices = list(range(num_examples)) # 打乱数据 random.shuffle(indices) for i in range(0, num_examples, batch_size): # 取出索引值 j = t.LongTensor(indices[i:min(i + batch_size, num_examples)]) yield features.index_select(0, j), labels.index_select(0, j) -
定义模型 损失函数和优化
w = t.tensor(np.random.normal(0, 0.01, (feature, 1)), dtype=t.float32) b = t.zeros(1, dtype=t.float32) w.requires_grad_(requires_grad=True) b.requires_grad_(requires_grad=True) def linreg(X, w, b): """线性回归模型""" return t.mm(X, w) + b def squared_loss(y_hat, y): """均方误差损失""" return ((y_hat - y.view(y_hat.size())) **2)/ 2 def sgd(params, lr, batch_size): """ 优化函数(小批量的梯度下降) 小批量的是计算一个batch中所有数据的Loss,再对一个batch的梯度进行平均 """ for param in params: param.data -= param.grad * lr / batch_size -
训练
# 定义超参数 lr = 0.03 num_epochs = 5 net = linreg loss = squared_loss for epoch in range(num_epochs): for X, y in data_iter(batch_size=batch_size, features=data, labels=labels): l = loss(net(X, w, b), y).sum() # BP l.backward() # 更新参数 sgd([w, b], lr, batch_size=batch_size) # 梯度清零 w.grad.data.zero_() b.grad.data.zero_() # 计算损失 train_l = loss(net(data, w, b), labels) print("epoch % d, loss %f"%(epoch+1, train_l.mean().item())) -
结果
#查看训练参数 for name, param in net.named_parameters(): print(name, param)linear.weight Parameter containing: tensor([[ 2.0004, -3.3998]], requires_grad=True) linear.bias Parameter containing: tensor([4.1997], requires_grad=True)
Pytorch代码实现
import torch
from torch import nn
import numpy as np
import torch.utils.data as Data
from torch.nn import init
# 使得模型的可复现性
torch.manual_seed(1)
# 设置默认的数据格式
torch.set_default_tensor_type('torch.FloatTensor')
# 1.数据处理
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
# 增加数据的噪声, 模拟真实数据
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
# 2.读取数据
batch_size = 10
dataset = Data.TensorDataset(features, labels)
# 查看数据的存储类型 [*dataset]
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True, num_workers=2)
# 3.定义网络
class LinearNet(nn.Module):
def __init__(self, n_feature):
super(LinearNet, self).__init__()
self.linear = nn.Linear(n_feature, 1)
def forward(self, x):
return self.linear(x)
net = LinearNet(feature)
# 初始化网络的参数(有多种初始化的方法,但是一般偏值设置为零)
for name, param in net.named_parameters():
if name == "linear.weight":
#权重
init.normal_(param, mean=0.0, std=0.01)
else:
#偏值
init.constant_(param, val=0.0)
# 4.训练
# 超参数
lr = 0.01
batch_size = 10
num_epochs = 5
# 定义损失
critrion = nn.MSELoss()
# 定义优化函数
optimizer = t.optim.SGD(net.parameters(), lr=lr)
for epoch in range(num_epochs):
for X, y in data_iter:
out = net(X)
loss = critrion(out, y.view(-1, 1))
# 梯度清零
optimizer.zero_grad()
loss.backward()
# 梯度更新
optimizer.step()
print("epcoch:%d, loss:%f"%(epoch, loss.item()))
结果:
epcoch:0, loss:0.861575
epcoch:1, loss:0.015179
epcoch:2, loss:0.000336
epcoch:3, loss:0.000168
epcoch:4, loss:0.000151
来源:CSDN
作者:张先生-你好
链接:https://blog.csdn.net/weixin_35154281/article/details/104317302