文本预处理
文本是一类序列数据,一篇文章可以看作是字符或单词的序列,下面介绍文本数据的常见预处理步骤,预处理通常包括四个步骤:
- 读入文本
- 分词
- 建立字典,将每个词映射到一个唯一的索引(index)
- 将文本从词的序列转换为索引的序列,方便输入模型
step1:读入文本
import collections import re def read_time_machine(): with open('/home/kesci/input/timemachine7163/timemachine.txt', 'r') as f: lines = [re.sub('[^a-z]+', ' ', line.strip().lower()) for line in f] return lines lines = read_time_machine() print('# sentences %d' % len(lines))
step2:分词
def tokenize(sentences, token='word'): """Split sentences into word or char tokens""" if token == 'word': return [sentence.split(' ') for sentence in sentences] elif token == 'char': return [list(sentence) for sentence in sentences] else: print('ERROR: unkown token type '+token) tokens = tokenize(lines) tokens[0:2]
step3:建立字典
构建一个字典(vocabulary),将每个词映射到一个唯一的索引编号,以便于方便模型处理。
class Vocab(object): def __init__(self, tokens, min_freq=0, use_special_tokens=False): counter = count_corpus(tokens) # : self.token_freqs = list(counter.items()) self.idx_to_token = [] if use_special_tokens: # padding, begin of sentence, end of sentence, unknown self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3) self.idx_to_token += ['', '', '', ''] else: self.unk = 0 self.idx_to_token += [''] self.idx_to_token += [token for token, freq in self.token_freqs if freq >= min_freq and token not in self.idx_to_token] self.token_to_idx = dict() for idx, token in enumerate(self.idx_to_token): self.token_to_idx[token] = idx def __len__(self): return len(self.idx_to_token) def __getitem__(self, tokens): if not isinstance(tokens, (list, tuple)): return self.token_to_idx.get(tokens, self.unk) return [self.__getitem__(token) for token in tokens] def to_tokens(self, indices): if not isinstance(indices, (list, tuple)): return self.idx_to_token[indices] return [self.idx_to_token[index] for index in indices] def count_corpus(sentences): tokens = [tk for st in sentences for tk in st] return collections.Counter(tokens) # 返回一个字典,记录每个词的出现次数
下面尝试用Time Machine作为语料构建字典:
vocab = Vocab(tokens) print(list(vocab.token_to_idx.items())[0:10])
step4:将词转为索引
for i in range(8, 10): print('words:', tokens[i]) print('indices:', vocab[tokens[i]])
用现有工具进行分词
我们前面介绍的分词方式非常简单,它至少有以下几个缺点:
- 标点符号通常可以提供语义信息,但是我们的方法直接将其丢弃了
- 类似“shouldn't", "doesn't"这样的词会被错误地处理
- 类似"Mr.", "Dr."这样的词会被错误地处理
我们可以通过引入更复杂的规则来解决这些问题,但是事实上,有一些现有的工具可以很好地进行分词,我们在这里简单介绍其中的两个:spaCy和NLTK。
下面是一个简单的例子:
text = "Mr. Chen doesn't agree with my suggestion."
1. 使用spaCy
import spacy nlp = spacy.load('en_core_web_sm') doc = nlp(text) print([token.text for token in doc])
2. 使用MLTK
from nltk.tokenize import word_tokenize from nltk import data data.path.append('/home/kesci/input/nltk_data3784/nltk_data') print(word_tokenize(text))
来源:https://www.cnblogs.com/KaifengGuan/p/12309155.html