Mr. Kitayuta has just bought an undirected graph consisting of n vertices and medges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.
Mr. Kitayuta wants you to process the following q queries.
In the i-th query, he gives you two integers — ui and vi.
Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.
Input
The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.
The next m lines contain space-separated three integers — ai, bi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).
The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.
Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.
Output
For each query, print the answer in a separate line.
Examples
4 51 2 11 2 22 3 12 3 32 4 331 23 41 4
210
5 71 5 12 5 13 5 14 5 11 2 22 3 23 4 251 55 12 51 51 4
11112
Note
Let's consider the first sample.
- Vertex 1 and vertex 2 are connected by color 1 and 2.
- Vertex 3 and vertex 4 are connected by color 3.
- Vertex 1 and vertex 4 are not connected by any single color.
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
#include<cmath>
const int maxn=1e5+5;
typedef long long ll;
using namespace std;
struct node
{
int v;
int val;
};
int ans=0;
int vis[105];
vector<node>vec[105];
void bfs(int x,int y)
{
node start;
for(int j=1;j<=100;j++)
{
queue<node>q;
memset(vis,0,sizeof(vis));
vis[x]=1;
for(int t=0;t<vec[x].size();t++)
{
if(vec[x][t].val==j&&vis[vec[x][t].v]==0)
{
q.push(vec[x][t]);
vis[vec[x][t].v]=1;
}
}
while(!q.empty())
{
node now=q.front();
q.pop();
if(now.v==y)
{
ans++;
}
for(int t=0;t<vec[now.v].size();t++)
{
if(vec[now.v][t].val==j&&vis[vec[now.v][t].v]==0)
{
vis[vec[now.v][t].v]=1;
q.push(vec[now.v][t]);
}
}
}
}
}
int main()
{
int n,m;
cin>>n>>m;
int a,b,c;
set<int>s;
for(int t=0;t<m;t++)
{
scanf("%d%d%d",&a,&b,&c);
s.insert(c);
node st;
st.v=b;
st.val=c;
vec[a].push_back(st);
st.v=a;
st.val=c;
vec[b].push_back(st);
}
int q;
cin>>q;
int uu,vv;
for(int t=0;t<q;t++)
{
scanf("%d%d",&uu,&vv);
ans=0;
bfs(uu,vv);
printf("%d\n",ans);
}
return 0;
}
来源:https://www.cnblogs.com/Staceyacm/p/10858718.html