有限制的问题,显然考虑全选再根据限制去掉的想法较优,我们发现一个点四周的点受限,其x或者y差一,也就是说奇偶性不同,那我们可以将其分成白点和黑点,就变成了最小割的问题,将每个白点向受限制的黑点连边,capacity为INF,每个黑点向汇点连边,capacity为该点的值,同理,源点向每个白点连边,这样受限的每一组之间都只会选出一个最小的来,通过capacity的限制来实现,最大流=最小割,将总和减去最小割(每一组最小的)就是答案
每一组黑白点,capacity来限制最小权,转换求最小割

#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&(-x))
typedef long long LL;
const int maxm = 1e5+5;
const int INF = 0x3f3f3f3f;
const int dx[] = {1, -1, 0, 0};
const int dy[] = {0, 0, 1, -1};
struct edge{
int u, v, cap, flow, nex;
} edges[maxm];
int head[maxm], cur[maxm], cnt, level[10005], buf[105][105], num[105][105], ID;
void init() {
memset(head, -1, sizeof(head));
}
void add(int u, int v, int cap) {
edges[cnt] = edge{u, v, cap, 0, head[u]};
head[u] = cnt++;
}
void addedge(int u, int v, int cap) {
add(u, v, cap), add(v, u, 0);
}
void bfs(int s) {
memset(level, -1, sizeof(level));
queue<int> q;
level[s] = 0;
q.push(s);
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i = head[u]; i != -1; i = edges[i].nex) {
edge& now = edges[i];
if(now.cap > now.flow && level[now.v] < 0) {
level[now.v] = level[u] + 1;
q.push(now.v);
}
}
}
}
int dfs(int u, int t, int f) {
if(u == t) return f;
for(int& i = cur[u]; i != -1; i = edges[i].nex) {
edge& now = edges[i];
if(now.cap > now.flow && level[u] < level[now.v]) {
int d = dfs(now.v, t, min(f, now.cap - now.flow));
if(d > 0) {
now.flow += d;
edges[i^1].flow -= d;
return d;
}
}
}
return 0;
}
int dinic(int s, int t) {
int maxflow = 0;
for(;;) {
bfs(s);
if(level[t] < 0) break;
memcpy(cur, head, sizeof(head));
int f;
while((f = dfs(s, t, INF)) > 0)
maxflow += f;
}
return maxflow;
}
void run_case() {
int m, n;
LL sum = 0;
init();
cin >> n >> m;
int s = 0, t = m*n+1;
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= m; ++j) {
cin >> buf[i][j];
sum += buf[i][j];
num[i][j] = ++ID;
if((i+j)%2==1) addedge(s, ID, buf[i][j]);
else addedge(ID, t, buf[i][j]);
}
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j) {
if((i+j)%2==0) continue;
for(int k = 0; k < 4; ++k) {
int nx = i+dx[k], ny = j+dy[k];
if(nx > n || nx < 1 || ny > m || ny < 1) continue;
addedge(num[i][j], num[nx][ny], INF);
}
}
sum -= dinic(s, t);
cout << sum;
}
int main() {
ios::sync_with_stdio(false), cin.tie(0);
run_case();
cout.flush();
return 0;
}
来源:https://www.cnblogs.com/GRedComeT/p/12298848.html
