图像梯度-Sobel算子

img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE)
cv2.imshow("img",img)
cv2.waitKey()
cv2.destroyAllWindows()
效果:

dst = cv2.Sobel(src, ddepth, dx, dy, ksize)
ddepth:图像的深度
dx和dy分别表示水平和竖直方向
ksize是Sobel算子的大小
def cv_show(img,name):
cv2.imshow(name,img)
cv2.waitKey()
cv2.destroyAllWindows()
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
cv_show(sobelx,'sobelx')
效果:

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) sobelx = cv2.convertScaleAbs(sobelx) #白到黑是正数,黑到白就是负数了,所有的负数会被截断成0,所以要取绝对值 cv_show(sobelx,'sobelx')
效果:

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) sobely = cv2.convertScaleAbs(sobely) cv_show(sobely,'sobely')
效果:

sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0) #分别计算x和y,再求和的结果 cv_show(sobelxy,'sobelxy')
效果:

sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3) #直接计算的效果,不是很好 sobelxy = cv2.convertScaleAbs(sobelxy) cv_show(sobelxy,'sobelxy')
效果:

img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
cv_show(img,'img')
效果:

img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
cv_show(sobelxy,'sobelxy')
效果:

img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy)
cv_show(sobelxy,'sobelxy')
效果:

图像梯度-Scharr算子与laplacian算子

Scharr算子Gy右边的-3改为3

laplacian算子
#不同算子的差异
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.convertScaleAbs(sobely)
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)
scharrx = cv2.convertScaleAbs(scharrx)
scharry = cv2.convertScaleAbs(scharry)
scharrxy = cv2.addWeighted(scharrx,0.5,scharry,0.5,0)
laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)
res = np.hstack((sobelxy,scharrxy,laplacian))
cv_show(res,'res')
效果:

来源:https://www.cnblogs.com/SCCQ/p/12291183.html