1.pytorch中给出的例子
https://github.com/pytorch/examples/blob/master/vae/main.py
实现过程非常简单:
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 400)#第一层,推断
self.fc21 = nn.Linear(400, 20)#对应均值
self.fc22 = nn.Linear(400, 20)#对应方差
self.fc3 = nn.Linear(20, 400)#生成层1
self.fc4 = nn.Linear(400, 784)#生成层2
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))#这里为什么选sigmoid而不是其他,需要斟酌
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize(mu, logvar)#对均值和方差进行重参数
return self.decode(z), mu, logvar
那我不明白了,这个https://github.com/wiseodd/generative-models里给的这些VAE实现有什么意义呢?还很难看懂
2.torch中Variable已弃用
来源:https://www.cnblogs.com/BlueBlueSea/p/12289801.html