机器学习基石笔记-Lecture 9 Linear regression

无人久伴 提交于 2020-02-09 05:49:18

线性回归的任务是对于一个输入,给出输出的实数,保证和真实输出相差越小越好。因为假设空间是线性的,所以最后的g会是直线或者平面。

通常的误差衡量方法是使用平方误差

接下来的问题是如何最小化 Ein

将Ein写成矩阵形式,

注意到Ein是w的函数,是连续的、可微的、凸函数。

对w求偏导使之为0则可以求出最优点。 

这是一个关于w的一次方程。

在 

 不可逆时,它的 pseudo-inverse仍然存在,只是会有多个,选取其中一个去得到w即可。

 

线性回归是一个学习算法吗?

先来看一看它的Ein

H也可以叫做投影矩阵

线性回归嘛,预测出来的y_hat 就在 span of X上。真实的y要与y_hat最小,那么就是要

那residual,也就是 y - y_hat 可以写作 y通过(I-H)做投影。

如果加入了noise, y - y_hat 也可以看做是 noise 通过(I-H)的投影

然后就有(???)为什么要求Ein的平均不太懂。。

第二条说的Eout的平均与Ein的平均的差,也就是平均的Eout与Ein的差,和VC给的保证(最坏的情形)不一样。

只要N足够大,noise比较小的话,learning happened.

 

可以使用linear regression 来做 linear classification.

首先看看两者的误差衡量方式,0/1 err最小化不好解。。

也就是说 regression的Ein 是大于 classification的 Ein的,那么看看Eout

classification的Eout 被 regression 的 Ein和 模型复杂度惩罚项(对两者而言是一样的)给bound住。

那么只要做好了regression的Ein,那么classification的Eout也可以很好。所以可以用regression来做classification.

 

linear regression:

优点:结果易于理解,计算不复杂。

缺点:对非线性数据拟合不好。

适用:数值型和标称型数据。

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!