Description
Input
输入文件包含多组测试数据。
Output
T行,每行一个整数,表示你所求的答案。
Sample Input
7 4
5 6
Sample Output
121
HINT
1<=N, M<=50000
题解
先给出一个结论: $$ \sigma_0(ij) = \sum_{a | i} \sum_{b | j} [gcd(a, b) = 1]$$
证明(摘自Ken_He):
我们令 $i = p_1^{a_1} p_2^{a_2} \cdots$ , $j = p_1^{b_1} p_2^{b_2} \cdots$ , $d | ij$ 且 $d = p_1^{c_1} p_2^{c_2} \cdots$ , 则 $c_n \le a_n + b_n$ 。
考虑如何不重复地统计每一个 $d$ : 令 $c_n = A_n + B_n$ , 其中 $A_n$ 和 $B_n$ 分别为 $i$ 和 $j$ 对 $c_n$ 的贡献, 则我们要求 \begin{cases}B_n = 0 & A_n < a_n \\B_n \ge 0 & A_n = a_n\end{cases}
这样一来, $c_n$ 的表示形式就变成唯一的了,因而不会被重复统计。我们再考虑如何统计这样的 $A_n$ 和 $B_n$ :我们令 $A_n' = a_n - A_n$ ,则约束条件变为\begin{cases}B_n = 0 & A_n' \ne 0 \\B_n \ge 0 & A_n' = 0\end{cases}
等价于 $gcd(a, b) = 1$ 。
因此得证。
\begin{aligned}ans&=\sum_{i=1}^N\sum_{j=1}^M\sum_{a\mid i}\sum_{b\mid j}[gcd(a,b)=1]\\&=\sum_{i=1}^N\sum_{j=1}^M\sum_{a\mid i}\sum_{b\mid j}\sum_{d\mid gcd(a,b)}\mu(d)\\&=\sum_{a=1}^N\sum_{b=1}^M\sum_{i=1}^{\left\lfloor\frac{N}{a}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{M}{b}\right\rfloor}\sum_{d\mid gcd(a,b)}\mu(d)\\&=\sum_{d=1}^{min\{N,M\}}\mu(d)\sum_{a=1}^{\left\lfloor\frac{N}{d}\right\rfloor}\sum_{b=1}^{\left\lfloor\frac{M}{d}\right\rfloor}\left\lfloor\frac{N}{ad}\right\rfloor\left\lfloor\frac{M}{bd}\right\rfloor\\&=\sum_{d=1}^{min\{N,M\}}\mu(d)\left(\sum_{a=1}^{\left\lfloor\frac{N}{d}\right\rfloor}\left\lfloor\frac{N}{ad}\right\rfloor\right)\left(\sum_{b=1}^{\left\lfloor\frac{M}{d}\right\rfloor}\left\lfloor\frac{M}{bd}\right\rfloor\right)\end{aligned}
设 $t(x)=\sum_{i=1}^x \left\lfloor\frac{x}{i}\right\rfloor$ ,
显然 $$\Rightarrow ans=\sum_{d=1}^{min\{N,M\}}\mu(d)\cdot t\left(\left\lfloor\frac{N}{d}\right\rfloor\right)\cdot t\left(\left\lfloor\frac{M}{d}\right\rfloor\right)$$
显然我们用 $O(n\sqrt n)$ 预处理出函数 $t$ ,再用 $O(T\sqrt n)$ 回答询问即可。
1 //It is made by Awson on 2018.1.22
2 #include <set>
3 #include <map>
4 #include <cmath>
5 #include <ctime>
6 #include <queue>
7 #include <stack>
8 #include <cstdio>
9 #include <string>
10 #include <vector>
11 #include <cstdlib>
12 #include <cstring>
13 #include <iostream>
14 #include <algorithm>
15 #define LL long long
16 #define Abs(a) ((a) < 0 ? (-(a)) : (a))
17 #define Max(a, b) ((a) > (b) ? (a) : (b))
18 #define Min(a, b) ((a) < (b) ? (a) : (b))
19 #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
20 #define writeln(x) (write(x), putchar('\n'))
21 #define lowbit(x) ((x)&(-(x)))
22 using namespace std;
23 const int N = 50000;
24 void read(int &x) {
25 char ch; bool flag = 0;
26 for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
27 for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
28 x *= 1-2*flag;
29 }
30 void write(LL x) {
31 if (x > 9) write(x/10);
32 putchar(x%10+48);
33 }
34
35 int mu[N+5], t[N+5], n, m;
36
37 void get_mu() {
38 int prime[N+5], isprime[N+5], tot = 0;
39 memset(isprime, 1, sizeof(isprime)); isprime[1] = 0, mu[1] = 1;
40 for (int i = 2; i <= N; i++) {
41 if (isprime[i]) prime[++tot] = i, mu[i] = -1;
42 for (int j = 1; j <= tot && i*prime[j] <= N; j++) {
43 isprime[i*prime[j]] = 0;
44 if (i%prime[j]) mu[i*prime[j]] = -mu[i];
45 else {mu[i*prime[j]] = 0; break; }
46 }
47 mu[i] += mu[i-1];
48 }
49 }
50 int get_t(int x) {
51 int ans = 0;
52 for (int i = 1, last; i <= x; i = last+1) {
53 last = x/(x/i); ans += (last-i+1)*(x/i);
54 }
55 return ans;
56 }
57
58 LL cal(int n, int m) {
59 if (n > m) Swap(n, m); LL ans = 0;
60 for (int i = 1, last; i <= n; i = last+1) {
61 last = Min(n/(n/i), m/(m/i));
62 ans += (LL)(mu[last]-mu[i-1])*t[n/i]*t[m/i];
63 }
64 return ans;
65 }
66 void work() {
67 read(n), read(m); writeln(cal(n,m));
68 }
69 int main() {
70 int T; read(T); get_mu();
71 for (int i = 1; i <= N; i++) t[i] = get_t(i);
72 while (T--) work();
73 return 0;
74 }
来源:https://www.cnblogs.com/NaVi-Awson/p/8328396.html