第一问可以直接DP来做,联想上一题,线性规划都可以化为网络流?我们可以借助第一问的DP数组,来建立第二问第三问的网络流图,考虑每一种可能,都是dp数组中满足num[i]>=num[j]&&dp[i]=dp[j]+1(i>j),每一种可能都是从dp为1的点递增到dp为第一问的值的点,那么我们就设一个源点一个汇点,每个源点向dp为1的点连capacity为1的边,每个dp为第一问答案的点向汇点连capacity为1的边,每一个满足dp条件,即num[i]>=num[j]&&dp[i]=dp[j]+1(i>j),从j向i连一条capacity为1的边,跑最大流即可,但是,我们注意到,题目要求是不同的,不重复的,而我们的做法无法考虑一个点是否重复使用,举个例子(丑图上
在这种情况下,第一个节点重复使用了,显然不满足题意,那我们怎么做呢,要满足不重复的条件,可以把每个点拆成入点和出点,入点向出点连一条capacity为1的边,就能完美的保证每个点只使用一次啦,相同情况如下,能保证只使用一次


#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&(-x))
typedef long long LL;
const int maxm = 3e3+5;
const int INF = 0x3f3f3f3f;
struct edge{
int u, v, cap, flow, nex;
} edges[maxm];
int head[maxm], cur[maxm], cnt, level[1005], buf[505], dp[505];
void init() {
memset(head, -1, sizeof(head));cnt = 0;
}
void add(int u, int v, int cap) {
edges[cnt] = edge{u, v, cap, 0, head[u]};
head[u] = cnt++;
}
void addedge(int u, int v, int cap) {
add(u, v, cap), add(v, u, 0);
}
void bfs(int s) {
memset(level, -1, sizeof(level));
queue<int> q;
level[s] = 0;
q.push(s);
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i = head[u]; i != -1; i = edges[i].nex) {
edge& now = edges[i];
if(now.cap > now.flow && level[now.v] < 0) {
level[now.v] = level[u] + 1;
q.push(now.v);
}
}
}
}
int dfs(int u, int t, int f) {
if(u == t) return f;
for(int& i = cur[u]; i != -1; i = edges[i].nex) {
edge& now = edges[i];
if(now.cap > now.flow && level[u] < level[now.v]) {
int d = dfs(now.v, t, min(f, now.cap - now.flow));
if(d > 0) {
now.flow += d;
edges[i^1].flow -= d;
return d;
}
}
}
return 0;
}
int dinic(int s, int t) {
int maxflow = 0;
for(;;) {
bfs(s);
if(level[t] < 0) break;
memcpy(cur, head, sizeof(head));
int f;
while((f = dfs(s, t, INF)) > 0)
maxflow += f;
}
return maxflow;
}
void run_case() {
int n;
init();
cin >> n;
int s = 0, t = (n<<1)+2;
for(int i = 1; i <= n; ++i) {
cin >> buf[i];
dp[i] = 1;
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j < i; ++j)
if(buf[i] >= buf[j])
dp[i] = max(dp[i], dp[j] + 1);
int ans = 0;
for(int i = 1; i <= n; ++i) ans = max(ans, dp[i]);
cout << ans << "\n";
for(int i = 1; i <= n; ++i) {
for(int j = 1; j < i; ++j) {
if(buf[i] >= buf[j] && dp[i] == dp[j]+1) addedge((j<<1)|1, i<<1, 1);
}
addedge(i<<1, (i<<1)|1, 1);
if(dp[i] == 1) addedge(s, i<<1, 1);
if(dp[i] == ans) addedge((i<<1)|1, t, 1);
}
int sum = dinic(s, t);
cout << sum << "\n";
addedge(2, 3, INF), addedge(n<<1, (n<<1)|1, INF);
if(dp[1] == 1) addedge(s, 2, INF);
if(dp[n] == ans) addedge((n<<1)|1, t, INF);
int threequestion = dinic(s, t);
sum += threequestion==INF?0:threequestion;
cout << sum << "\n";
}
int main() {
ios::sync_with_stdio(false), cin.tie(0);
run_case();
cout.flush();
return 0;
}
来源:https://www.cnblogs.com/GRedComeT/p/12285559.html
