参考,
http://wuchong.me/blog/2016/05/25/flink-internals-window-mechanism/
http://wuchong.me/blog/2016/06/06/flink-internals-session-window/
WindowOperator
window operator通过WindowAssigner和Trigger来实现它的逻辑
当一个element到达时,通过KeySelector先assign一个key,并且通过WindowAssigner assign若干个windows,这样这个element会被放入若干个pane
一个pane会存放所有相同key和相同window的elements
/**
* An operator that implements the logic for windowing based on a {@link WindowAssigner} and
* {@link Trigger}.
*
* <p>
* When an element arrives it gets assigned a key using a {@link KeySelector} and it gets
* assigned to zero or more windows using a {@link WindowAssigner}. Based on this, the element
* is put into panes. A pane is the bucket of elements that have the same key and same
* {@code Window}. An element can be in multiple panes if it was assigned to multiple windows by the
* {@code WindowAssigner}.
*
* <p>
* Each pane gets its own instance of the provided {@code Trigger}. This trigger determines when
* the contents of the pane should be processed to emit results. When a trigger fires,
* the given {@link InternalWindowFunction} is invoked to produce the results that are emitted for
* the pane to which the {@code Trigger} belongs.
*
* @param <K> The type of key returned by the {@code KeySelector}.
* @param <IN> The type of the incoming elements.
* @param <OUT> The type of elements emitted by the {@code InternalWindowFunction}.
* @param <W> The type of {@code Window} that the {@code WindowAssigner} assigns.
*/
@Internal
public class WindowOperator<K, IN, ACC, OUT, W extends Window>
extends AbstractUdfStreamOperator<OUT, InternalWindowFunction<ACC, OUT, K, W>>
implements OneInputStreamOperator<IN, OUT>, Triggerable, InputTypeConfigurable {
// ------------------------------------------------------------------------
// Configuration values and user functions
// ------------------------------------------------------------------------
protected final WindowAssigner<? super IN, W> windowAssigner;
protected final KeySelector<IN, K> keySelector;
protected final Trigger<? super IN, ? super W> trigger;
protected final StateDescriptor<? extends AppendingState<IN, ACC>, ?> windowStateDescriptor;
/**
* The allowed lateness for elements. This is used for:
* <ul>
* <li>Deciding if an element should be dropped from a window due to lateness.
* <li>Clearing the state of a window if the system time passes the
* {@code window.maxTimestamp + allowedLateness} landmark.
* </ul>
*/
protected final long allowedLateness; //允许late多久,即当watermark已经触发后
/**
* To keep track of the current watermark so that we can immediately fire if a trigger
* registers an event time callback for a timestamp that lies in the past.
*/
protected transient long currentWatermark = Long.MIN_VALUE;
protected transient Context context = new Context(null, null); //Trigger Context
protected transient WindowAssigner.WindowAssignerContext windowAssignerContext; //只为获取getCurrentProcessingTime
// ------------------------------------------------------------------------
// State that needs to be checkpointed
// ------------------------------------------------------------------------
/**
* Processing time timers that are currently in-flight.
*/
protected transient PriorityQueue<Timer<K, W>> processingTimeTimersQueue; //Timer用于存储timestamp,key,window, queue按时间排序
/**
* Current waiting watermark callbacks.
*/
protected transient Set<Timer<K, W>> watermarkTimers;
protected transient PriorityQueue<Timer<K, W>> watermarkTimersQueue; //
protected transient Map<K, MergingWindowSet<W>> mergingWindowsByKey; //用于记录merge后的stateWindow和window的对应关系
对于window operator而已,最关键的是WindowAssigner和Trigger
WindowAssigner
WindowAssigner,用于指定一个tuple应该被分配到那些windows去
借用个图,可以看出有多少种WindowAssigner
对于WindowAssigner,最关键的接口是,assignWindows
为一个element,分配一组windows, Collection<W>
@PublicEvolving
public abstract class WindowAssigner<T, W extends Window> implements Serializable {
private static final long serialVersionUID = 1L;
/**
* Returns a {@code Collection} of windows that should be assigned to the element.
*
* @param element The element to which windows should be assigned.
* @param timestamp The timestamp of the element.
* @param context The {@link WindowAssignerContext} in which the assigner operates.
*/
public abstract Collection<W> assignWindows(T element, long timestamp, WindowAssignerContext context);
/**
* Returns the default trigger associated with this {@code WindowAssigner}.
*/
public abstract Trigger<T, W> getDefaultTrigger(StreamExecutionEnvironment env);
/**
* Returns a {@link TypeSerializer} for serializing windows that are assigned by
* this {@code WindowAssigner}.
*/
public abstract TypeSerializer<W> getWindowSerializer(ExecutionConfig executionConfig);
实际看下,具体WindowAssigner的实现
public class TumblingProcessingTimeWindows extends WindowAssigner<Object, TimeWindow> {
@Override
public Collection<TimeWindow> assignWindows(Object element, long timestamp, WindowAssignerContext context) {
final long now = context.getCurrentProcessingTime();
long start = now - (now % size);
return Collections.singletonList(new TimeWindow(start, start + size)); //很简单,分配一个TimeWindow
}
@Override
public Trigger<Object, TimeWindow> getDefaultTrigger(StreamExecutionEnvironment env) {
return ProcessingTimeTrigger.create(); //默认给出的是ProcessingTimeTrigger,如其名
}
public class SlidingEventTimeWindows extends WindowAssigner<Object, TimeWindow> {
private final long size;
private final long slide;
@Override
public Collection<TimeWindow> assignWindows(Object element, long timestamp, WindowAssignerContext context) {
if (timestamp > Long.MIN_VALUE) {
List<TimeWindow> windows = new ArrayList<>((int) (size / slide));
long lastStart = timestamp - timestamp % slide;
for (long start = lastStart;
start > timestamp - size;
start -= slide) {
windows.add(new TimeWindow(start, start + size)); //可以看到这里会assign多个TimeWindow,因为是slide
}
return windows;
} else {
}
}
@Override
public Trigger<Object, TimeWindow> getDefaultTrigger(StreamExecutionEnvironment env) {
return EventTimeTrigger.create();
}
Trigger, Evictor
下面看看3个主要的接口,分别触发,onElement,onEventTime,onProcessingTime
processElement
处理element到达的逻辑,触发onElement
public void processElement(StreamRecord<IN> element) throws Exception {
Collection<W> elementWindows = windowAssigner.assignWindows( //通过WindowAssigner为element分配一系列windows
element.getValue(), element.getTimestamp(), windowAssignerContext);
final K key = (K) getStateBackend().getCurrentKey();
if (windowAssigner instanceof MergingWindowAssigner) { //如果是MergingWindow
//.......
} else { //如果是普通window
for (W window: elementWindows) {
// drop if the window is already late
if (isLate(window)) { //late data的处理,默认是丢弃
continue;
}
AppendingState<IN, ACC> windowState = getPartitionedState( //从backend中取出该window的状态,就是buffer的element
window, windowSerializer, windowStateDescriptor);
windowState.add(element.getValue()); //把当前的element加入buffer state
context.key = key;
context.window = window; //context的设计相当tricky和晦涩
TriggerResult triggerResult = context.onElement(element); //触发onElment,得到triggerResult
if (triggerResult.isFire()) { //对triggerResult做各种处理
ACC contents = windowState.get();
if (contents == null) {
continue;
}
fire(window, contents); //如果fire,真正去计算窗口中的elements
}
if (triggerResult.isPurge()) {
cleanup(window, windowState, null); //purge,即去cleanup elements
} else {
registerCleanupTimer(window);
}
}
}
}
判断是否是late data的逻辑
protected boolean isLate(W window) {
return (windowAssigner.isEventTime() && (cleanupTime(window) <= currentWatermark));
}
private long cleanupTime(W window) {
long cleanupTime = window.maxTimestamp() + allowedLateness; //allowedLateness;
return cleanupTime >= window.maxTimestamp() ? cleanupTime : Long.MAX_VALUE;
}
fire逻辑
private void fire(W window, ACC contents) throws Exception {
timestampedCollector.setAbsoluteTimestamp(window.maxTimestamp());
userFunction.apply(context.key, context.window, contents, timestampedCollector);
}
processWatermark
处理watermark,onEvent触发
@Override
public void processWatermark(Watermark mark) throws Exception {
boolean fire;
do {
Timer<K, W> timer = watermarkTimersQueue.peek(); //这叫watermarkTimersQueue,是否有些歧义,叫eventTimerQueue更好理解些
if (timer != null && timer.timestamp <= mark.getTimestamp()) {
fire = true;
watermarkTimers.remove(timer);
watermarkTimersQueue.remove();
context.key = timer.key;
context.window = timer.window;
setKeyContext(timer.key); //stateBackend.setCurrentKey(key);
AppendingState<IN, ACC> windowState;
MergingWindowSet<W> mergingWindows = null;
if (windowAssigner instanceof MergingWindowAssigner) { //MergingWindow
mergingWindows = getMergingWindowSet();
W stateWindow = mergingWindows.getStateWindow(context.window);
if (stateWindow == null) {
// then the window is already purged and this is a cleanup
// timer set due to allowed lateness that has nothing to clean,
// so it is safe to just ignore
continue;
}
windowState = getPartitionedState(stateWindow, windowSerializer, windowStateDescriptor);
} else { //普通window
windowState = getPartitionedState(context.window, windowSerializer, windowStateDescriptor); //取得window的state
}
ACC contents = windowState.get();
if (contents == null) {
// if we have no state, there is nothing to do
continue;
}
TriggerResult triggerResult = context.onEventTime(timer.timestamp); //触发onEvent
if (triggerResult.isFire()) {
fire(context.window, contents);
}
if (triggerResult.isPurge() || (windowAssigner.isEventTime() && isCleanupTime(context.window, timer.timestamp))) {
cleanup(context.window, windowState, mergingWindows);
}
} else {
fire = false;
}
} while (fire); //如果fire为true,继续看下个waterMarkTimer是否需要fire
output.emitWatermark(mark); //把waterMark传递下去
this.currentWatermark = mark.getTimestamp(); //更新currentWaterMark
}
trigger
首先,这个函数的命名有问题,为何和前面的process…不匹配
这个是用来触发onProcessingTime,这个需要依赖系统时间的定时器来触发,逻辑和processWatermark基本等同,只是触发条件不一样
@Override
public void trigger(long time) throws Exception {
boolean fire;
//Remove information about the triggering task
processingTimeTimerFutures.remove(time);
processingTimeTimerTimestamps.remove(time, processingTimeTimerTimestamps.count(time));
do {
Timer<K, W> timer = processingTimeTimersQueue.peek();
if (timer != null && timer.timestamp <= time) {
fire = true;
processingTimeTimers.remove(timer);
processingTimeTimersQueue.remove();
context.key = timer.key;
context.window = timer.window;
setKeyContext(timer.key);
AppendingState<IN, ACC> windowState;
MergingWindowSet<W> mergingWindows = null;
if (windowAssigner instanceof MergingWindowAssigner) {
mergingWindows = getMergingWindowSet();
W stateWindow = mergingWindows.getStateWindow(context.window);
if (stateWindow == null) {
// then the window is already purged and this is a cleanup
// timer set due to allowed lateness that has nothing to clean,
// so it is safe to just ignore
continue;
}
windowState = getPartitionedState(stateWindow, windowSerializer, windowStateDescriptor);
} else {
windowState = getPartitionedState(context.window, windowSerializer, windowStateDescriptor);
}
ACC contents = windowState.get();
if (contents == null) {
// if we have no state, there is nothing to do
continue;
}
TriggerResult triggerResult = context.onProcessingTime(timer.timestamp);
if (triggerResult.isFire()) {
fire(context.window, contents);
}
if (triggerResult.isPurge() || (!windowAssigner.isEventTime() && isCleanupTime(context.window, timer.timestamp))) {
cleanup(context.window, windowState, mergingWindows);
}
} else {
fire = false;
}
} while (fire);
}
EvictingWindowOperator
Evicting对于WindowOperator而言,就是多了Evictor
private void fire(W window, Iterable<StreamRecord<IN>> contents) throws Exception {
timestampedCollector.setAbsoluteTimestamp(window.maxTimestamp());
// Work around type system restrictions...
int toEvict = evictor.evict((Iterable) contents, Iterables.size(contents), context.window); //执行evict
FluentIterable<IN> projectedContents = FluentIterable
.from(contents)
.skip(toEvict)
.transform(new Function<StreamRecord<IN>, IN>() {
@Override
public IN apply(StreamRecord<IN> input) {
return input.getValue();
}
});
userFunction.apply(context.key, context.window, projectedContents, timestampedCollector);
}
关键的逻辑就是在fire的时候,在apply function之前,会先remove需要evict的elements
来源:https://www.cnblogs.com/fxjwind/p/6137608.html
