深度估计学习(单个图像的预测)

送分小仙女□ 提交于 2020-02-03 20:43:35

1.安装环境

conda install pytorch=0.4.1 torchvision=0.2.1 -c pytorch
pip install tensorboardX==1.4
conda install opencv=3.3.1 

模型

--model_name Training modality Imagenet pretrained? Model resolution KITTI abs. rel. error delta < 1.25
mono_640x192 Mono Yes 640 x 192 0.115 0.877
stereo_640x192 Stereo Yes 640 x 192 0.109 0.864
mono+stereo_640x192 Mono + Stereo Yes 640 x 192 0.106 0.874
mono_1024x320 Mono Yes 1024 x 320 0.115 0.879
stereo_1024x320 Stereo Yes 1024 x 320 0.107 0.874
mono+stereo_1024x320 Mono + Stereo Yes 1024 x 320 0.106 0.876
mono_no_pt_640x192 Mono No 640 x 192 0.132 0.845
stereo_no_pt_640x192 Stereo No 640 x 192 0.130 0.831
mono+stereo_no_pt_640x192 Mono + Stereo No 640 x 192 0.127 0.836

2.测试代码:

from __future__ import absolute_import, division, print_function

import os
import sys
import glob
import argparse
import numpy as np
import PIL.Image as pil
import matplotlib as mpl
import matplotlib.cm as cm

import torch
from torchvision import transforms, datasets

import networks
from layers import disp_to_depth
from utils import download_model_if_doesnt_exist


def parse_args():
    parser = argparse.ArgumentParser(
        description='Simple testing funtion for Monodepthv2 models.')

    parser.add_argument('--image_path', type=str,
                        help='path to a test image or folder of images', required=True)
    parser.add_argument('--model_name', type=str,
                        help='name of a pretrained model to use',
                        choices=[
                            "mono_640x192",
                            "stereo_640x192",
                            "mono+stereo_640x192",
                            "mono_no_pt_640x192",
                            "stereo_no_pt_640x192",
                            "mono+stereo_no_pt_640x192",
                            "mono_1024x320",
                            "stereo_1024x320",
                            "mono+stereo_1024x320"])
    parser.add_argument('--ext', type=str,
                        help='image extension to search for in folder', default="jpg")
    parser.add_argument("--no_cuda",
                        help='if set, disables CUDA',
                        action='store_true')

    return parser.parse_args()


def test_simple(args):
    """Function to predict for a single image or folder of images
    """
    assert args.model_name is not None, \
        "You must specify the --model_name parameter; see README.md for an example"

    if torch.cuda.is_available() and not args.no_cuda:
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    download_model_if_doesnt_exist(args.model_name)
    model_path = os.path.join("models", args.model_name)
    print("-> Loading model from ", model_path)
    encoder_path = os.path.join(model_path, "encoder.pth")
    depth_decoder_path = os.path.join(model_path, "depth.pth")

    # LOADING PRETRAINED MODEL
    print("   Loading pretrained encoder")
    encoder = networks.ResnetEncoder(18, False)
    loaded_dict_enc = torch.load(encoder_path, map_location=device)

    # extract the height and width of image that this model was trained with
    feed_height = loaded_dict_enc['height']
    feed_width = loaded_dict_enc['width']
    filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in encoder.state_dict()}
    encoder.load_state_dict(filtered_dict_enc)
    encoder.to(device)
    encoder.eval()

    print("   Loading pretrained decoder")
    depth_decoder = networks.DepthDecoder(
        num_ch_enc=encoder.num_ch_enc, scales=range(4))

    loaded_dict = torch.load(depth_decoder_path, map_location=device)
    depth_decoder.load_state_dict(loaded_dict)

    depth_decoder.to(device)
    depth_decoder.eval()

    # FINDING INPUT IMAGES
    if os.path.isfile(args.image_path):
        # Only testing on a single image
        paths = [args.image_path]
        output_directory = os.path.dirname(args.image_path)
    elif os.path.isdir(args.image_path):
        # Searching folder for images
        paths = glob.glob(os.path.join(args.image_path, '*.{}'.format(args.ext)))
        output_directory = args.image_path
    else:
        raise Exception("Can not find args.image_path: {}".format(args.image_path))

    print("-> Predicting on {:d} test images".format(len(paths)))

    # PREDICTING ON EACH IMAGE IN TURN
    with torch.no_grad():
        for idx, image_path in enumerate(paths):

            if image_path.endswith("_disp.jpg"):
                # don't try to predict disparity for a disparity image!
                continue

            # Load image and preprocess
            input_image = pil.open(image_path).convert('RGB')
            original_width, original_height = input_image.size
            input_image = input_image.resize((feed_width, feed_height), pil.LANCZOS)
            input_image = transforms.ToTensor()(input_image).unsqueeze(0)

            # PREDICTION
            input_image = input_image.to(device)
            features = encoder(input_image)
            outputs = depth_decoder(features)

            disp = outputs[("disp", 0)]
            disp_resized = torch.nn.functional.interpolate(
                disp, (original_height, original_width), mode="bilinear", align_corners=False)

            # Saving numpy file
            output_name = os.path.splitext(os.path.basename(image_path))[0]
            name_dest_npy = os.path.join(output_directory, "{}_disp.npy".format(output_name))
            scaled_disp, _ = disp_to_depth(disp, 0.1, 100)
            np.save(name_dest_npy, scaled_disp.cpu().numpy())

            # Saving colormapped depth image
            disp_resized_np = disp_resized.squeeze().cpu().numpy()
            vmax = np.percentile(disp_resized_np, 95)
            normalizer = mpl.colors.Normalize(vmin=disp_resized_np.min(), vmax=vmax)
            mapper = cm.ScalarMappable(norm=normalizer, cmap='magma')
            colormapped_im = (mapper.to_rgba(disp_resized_np)[:, :, :3] * 255).astype(np.uint8)
            im = pil.fromarray(colormapped_im)

            name_dest_im = os.path.join(output_directory, "{}_disp.jpeg".format(output_name))
            im.save(name_dest_im)

            print("   Processed {:d} of {:d} images - saved prediction to {}".format(
                idx + 1, len(paths), name_dest_im))

    print('-> Done!')


if __name__ == '__main__':
    args = parse_args()
    test_simple(args)

3.测试图片:
在这里插入图片描述
在这里插入图片描述
4.测试效果
a.利用mono_640x192模型来预测
在这里插入图片描述
在这里插入图片描述
b.利用stereo_640x192模型来预测
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
c.利用mono+stereo_640x192模型来预测
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
剩下的模型就没测试了
总结:从效果图来看颜色的深浅反应了深度,颜色越深,表示深度大,表示距离远

github:https://github.com/nianticlabs/monodepth2

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!