在分布式集群环境下,对 Redis 数据的修改也会发生冲突,这时候需要利用锁的机制,防止数据在同一时间被多个系统修改。

实现分布式锁的思路就是利用 Redis 的两个命令:setnx 和 setex,修改数据前使用 setnx 命令对操作加锁,防止其他系统执行相同操作,使用 setex 命令设置锁超时时间(这一步的目的是防止系统突然挂掉,没有解锁),在操作结束后,进行解锁。

我们新建一个任务 Scheduled,每10秒执行一次,在不同的机器(虚拟机)上启动相同的项目,因为锁的原因,同一时间只有一个任务被执行,代码如下:
@Service
public class LockNxExJob {
private static final Logger logger = LoggerFactory.getLogger(LockNxExJob.class);
@Autowired
private RedisService redisService;
@Autowired
private RedisTemplate redisTemplate;
private static String LOCK_PREFIX = "prefix_";
@Scheduled(cron = "0/10 * * * * *")
public void lockJob() {
String lock = LOCK_PREFIX + "LockNxExJob";
try{
//redistemplate setnx操作
boolean nxRet = redisTemplate.opsForValue().setIfAbsent(lock,getHostIp()); //试想一下,加入程序运行到这里,系统发生宕机
Object lockValue = redisService.get(lock);
//获取锁失败
if(!nxRet){
//宕机后,每次获取锁都会失败,这个锁除非人为解锁,否则一直被锁 String value = (String)redisService.get(lock);
//打印当前占用锁的服务器IP
logger.info("get lock fail,lock belong to:{}",value);
return;
}else{
redisTemplate.opsForValue().set(lock,getHostIp(),3600);
//获取锁成功
logger.info("start lock lockNxExJob success");
Thread.sleep(5000);
}
}catch (Exception e){
logger.error("lock error",e);
}finally {
//任务完成后,释放锁
redisService.remove(lock);
}
}
/**
* 获取本机内网IP地址方法
* @return
*/
private static String getHostIp(){
try{
Enumeration<NetworkInterface> allNetInterfaces = NetworkInterface.getNetworkInterfaces();
while (allNetInterfaces.hasMoreElements()){
NetworkInterface netInterface = (NetworkInterface) allNetInterfaces.nextElement();
Enumeration<InetAddress> addresses = netInterface.getInetAddresses();
while (addresses.hasMoreElements()){
InetAddress ip = (InetAddress) addresses.nextElement();
if (ip != null
&& ip instanceof Inet4Address
&& !ip.isLoopbackAddress() //loopback地址即本机地址,IPv4的loopback范围是127.0.0.0 ~ 127.255.255.255
&& ip.getHostAddress().indexOf(":")==-1){
return ip.getHostAddress();
}
}
}
}catch(Exception e){
e.printStackTrace();
}
return null;
}
}
上面代码使用到的 RedisService 类

@Service
public class RedisService {
@Autowired
private RedisTemplate redisTemplate;
private static double size = Math.pow(2, 32);
/**
* 写入缓存
*
* @param key
* @param offset 位 8Bit=1Byte
* @return
*/
public boolean setBit(String key, long offset, boolean isShow) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
operations.setBit(key, offset, isShow);
result = true;
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 写入缓存
*
* @param key
* @param offset
* @return
*/
public boolean getBit(String key, long offset) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
result = operations.getBit(key, offset);
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 写入缓存
*
* @param key
* @param value
* @return
*/
public boolean set(final String key, Object value) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
operations.set(key, value);
result = true;
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 写入缓存设置时效时间
*
* @param key
* @param value
* @return
*/
public boolean set(final String key, Object value, Long expireTime) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
operations.set(key, value);
redisTemplate.expire(key, expireTime, TimeUnit.SECONDS);
result = true;
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 批量删除对应的value
*
* @param keys
*/
public void remove(final String... keys) {
for (String key : keys) {
remove(key);
}
}
/**
* 删除对应的value
*
* @param key
*/
public void remove(final String key) {
if (exists(key)) {
redisTemplate.delete(key);
}
}
/**
* 判断缓存中是否有对应的value
*
* @param key
* @return
*/
public boolean exists(final String key) {
return redisTemplate.hasKey(key);
}
/**
* 读取缓存
*
* @param key
* @return
*/
public Object genValue(final String key) {
Object result = null;
ValueOperations<String, String> operations = redisTemplate.opsForValue();
result = operations.get(key);
return result;
}
/**
* 哈希 添加
*
* @param key
* @param hashKey
* @param value
*/
public void hmSet(String key, Object hashKey, Object value) {
HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
hash.put(key, hashKey, value);
}
/**
* 哈希获取数据
*
* @param key
* @param hashKey
* @return
*/
public Object hmGet(String key, Object hashKey) {
HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
return hash.get(key, hashKey);
}
/**
* 列表添加
*
* @param k
* @param v
*/
public void lPush(String k, Object v) {
ListOperations<String, Object> list = redisTemplate.opsForList();
list.rightPush(k, v);
}
/**
* 列表获取
*
* @param k
* @param l
* @param l1
* @return
*/
public List<Object> lRange(String k, long l, long l1) {
ListOperations<String, Object> list = redisTemplate.opsForList();
return list.range(k, l, l1);
}
/**
* 集合添加
*
* @param key
* @param value
*/
public void add(String key, Object value) {
SetOperations<String, Object> set = redisTemplate.opsForSet();
set.add(key, value);
}
/**
* 集合获取
*
* @param key
* @return
*/
public Set<Object> setMembers(String key) {
SetOperations<String, Object> set = redisTemplate.opsForSet();
return set.members(key);
}
/**
* 有序集合添加
*
* @param key
* @param value
* @param scoure
*/
public void zAdd(String key, Object value, double scoure) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
zset.add(key, value, scoure);
}
/**
* 有序集合获取
*
* @param key
* @param scoure
* @param scoure1
* @return
*/
public Set<Object> rangeByScore(String key, double scoure, double scoure1) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
redisTemplate.opsForValue();
return zset.rangeByScore(key, scoure, scoure1);
}
//第一次加载的时候将数据加载到redis中
public void saveDataToRedis(String name) {
double index = Math.abs(name.hashCode() % size);
long indexLong = new Double(index).longValue();
boolean availableUsers = setBit("availableUsers", indexLong, true);
}
//第一次加载的时候将数据加载到redis中
public boolean getDataToRedis(String name) {
double index = Math.abs(name.hashCode() % size);
long indexLong = new Double(index).longValue();
return getBit("availableUsers", indexLong);
}
/**
* 有序集合获取排名
*
* @param key 集合名称
* @param value 值
*/
public Long zRank(String key, Object value) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
return zset.rank(key,value);
}
/**
* 有序集合获取排名
*
* @param key
*/
public Set<ZSetOperations.TypedTuple<Object>> zRankWithScore(String key, long start,long end) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
Set<ZSetOperations.TypedTuple<Object>> ret = zset.rangeWithScores(key,start,end);
return ret;
}
/**
* 有序集合添加
*
* @param key
* @param value
*/
public Double zSetScore(String key, Object value) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
return zset.score(key,value);
}
/**
* 有序集合添加分数
*
* @param key
* @param value
* @param scoure
*/
public void incrementScore(String key, Object value, double scoure) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
zset.incrementScore(key, value, scoure);
}
/**
* 有序集合获取排名
*
* @param key
*/
public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithScore(String key, long start,long end) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeByScoreWithScores(key,start,end);
return ret;
}
/**
* 有序集合获取排名
*
* @param key
*/
public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithRank(String key, long start, long end) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeWithScores(key, start, end);
return ret;
}
}
当然,这样的做法虽然可以实现锁的功能,但是,无法解决突然的宕机,导致无法解除锁的问题,就像程序中红字标注的情况

既然这样,是否可以在加锁的同时设置锁的超时时间呢?只要加锁成功,那么锁必然会有超时时间,就可以解决问题了。这里提供两种解决方法。
第一种方法:使用 lua 脚本
@Service
public class LuaDistributeLock {
private static final Logger logger = LoggerFactory.getLogger(LockNxExJob.class);
@Autowired
private RedisService redisService;
@Autowired
private RedisTemplate redisTemplate;
private static String LOCK_PREFIX = "lua_";
private DefaultRedisScript<Boolean> lockScript;
@Scheduled(cron = "0/10 * * * * *")
public void lockJob() {
String lock = LOCK_PREFIX + "LockNxExJob";
boolean luaRet = false;
try {
luaRet = luaExpress(lock,getHostIp());
//获取锁失败
if (!luaRet) {
String value = (String) redisService.genValue(lock);
//打印当前占用锁的服务器IP
//logger.info("lua get lock fail,lock belong to:{}", value);
return;
} else {
//获取锁成功
//logger.info("lua start lock lockNxExJob success");
Thread.sleep(5000);
}
} catch (Exception e) {
logger.error("lock error", e);
} finally {
if (luaRet) {
//logger.info("release lock success");
redisService.remove(lock);
}
}
}
/**
* 获取lua结果
* @param key
* @param value
* @return
*/
public Boolean luaExpress(String key,String value) {
lockScript = new DefaultRedisScript<Boolean>();
lockScript.setScriptSource(
new ResourceScriptSource(new ClassPathResource("add.lua")));
lockScript.setResultType(Boolean.class);
// 封装参数
List<Object> keyList = new ArrayList<Object>();
keyList.add(key);
keyList.add(value);
Boolean result = (Boolean) redisTemplate.execute(lockScript, keyList);
return result;
}
/**
* 获取本机内网IP地址方法
*
* @return
*/
private static String getHostIp() {
try {
Enumeration<NetworkInterface> allNetInterfaces = NetworkInterface.getNetworkInterfaces();
while (allNetInterfaces.hasMoreElements()) {
NetworkInterface netInterface = (NetworkInterface) allNetInterfaces.nextElement();
Enumeration<InetAddress> addresses = netInterface.getInetAddresses();
while (addresses.hasMoreElements()) {
InetAddress ip = (InetAddress) addresses.nextElement();
if (ip != null
&& ip instanceof Inet4Address
&& !ip.isLoopbackAddress() //loopback地址即本机地址,IPv4的loopback范围是127.0.0.0 ~ 127.255.255.255
&& ip.getHostAddress().indexOf(":") == -1) {
return ip.getHostAddress();
}
}
}
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
}
add.lua 脚本的内容如下
local lockKey = KEYS[1]
local lockValue = KEYS[2]
-- setnx info
local result_1 = redis.call('SETNX', lockKey, lockValue)
if result_1 == true
then
local result_2= redis.call('SETEX', lockKey,3600, lockValue)
return result_1
else
return result_1
end
脚本文件放置在 resources 下

第二种方法:Redis 原生 API 实现了 setnx 和 setex 两个命令连用的方法,我们就使用这个方法
引入依赖
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.9.0</version>
</dependency>
代码如下:
@Component
public class JedisDistributedLock {
private final Logger logger = LoggerFactory.getLogger(JedisDistributedLock.class);
private static String LOCK_PREFIX = "lua_";
@Resource
private RedisTemplate<String, Object> redisTemplate;
@Autowired
private RedisService redisService;
public static final String UNLOCK_LUA;
static {
StringBuilder sb = new StringBuilder();
sb.append("if redis.call(\"get\",KEYS[1]) == ARGV[1] ");
sb.append("then ");
sb.append(" return redis.call(\"del\",KEYS[1]) ");
sb.append("else ");
sb.append(" return 0 ");
sb.append("end ");
UNLOCK_LUA = sb.toString();
}
@Scheduled(cron = "0/10 * * * * *")
public void lockJob() {
String lock = LOCK_PREFIX + "JedisNxExJob";
boolean lockRet = false;
try {
lockRet = this.setLock(lock, 600);
//获取锁失败
if (!lockRet) {
String value = (String) redisService.genValue(lock);
//打印当前占用锁的服务器IP
logger.info("jedisLockJob get lock fail,lock belong to:{}", value);
return;
} else {
//获取锁成功
logger.info("jedisLockJob start lock lockNxExJob success");
Thread.sleep(5000);
}
} catch (Exception e) {
logger.error("jedisLockJob lock error", e);
} finally {
if (lockRet) {
logger.info("jedisLockJob release lock success");
redisService.remove(lock);
}
}
}
public boolean setLock(String key, long expire) {
try {
Boolean result = redisTemplate.execute(new RedisCallback<Boolean>() {
@Override
public Boolean doInRedis(RedisConnection connection) throws DataAccessException {
return connection.set(key.getBytes(), "锁定的资源".getBytes(), Expiration.seconds(expire) ,RedisStringCommands.SetOption.ifAbsent());
}
});
return result;
} catch (Exception e) {
logger.error("set redis occured an exception", e);
}
return false;
}
public String get(String key) {
try {
RedisCallback<String> callback = (connection) -> {
JedisCommands commands = (JedisCommands) connection.getNativeConnection();
return commands.get(key);
};
String result = redisTemplate.execute(callback);
return result;
} catch (Exception e) {
logger.error("get redis occured an exception", e);
}
return "";
}
public boolean releaseLock(String key, String requestId) {
// 释放锁的时候,有可能因为持锁之后方法执行时间大于锁的有效期,此时有可能已经被另外一个线程持有锁,所以不能直接删除
try {
List<String> keys = new ArrayList<>();
keys.add(key);
List<String> args = new ArrayList<>();
args.add(requestId);
// 使用lua脚本删除redis中匹配value的key,可以避免由于方法执行时间过长而redis锁自动过期失效的时候误删其他线程的锁
// spring自带的执行脚本方法中,集群模式直接抛出不支持执行脚本的异常,所以只能拿到原redis的connection来执行脚本
RedisCallback<Long> callback = (connection) -> {
Object nativeConnection = connection.getNativeConnection();
// 集群模式和单机模式虽然执行脚本的方法一样,但是没有共同的接口,所以只能分开执行
// 集群模式
if (nativeConnection instanceof JedisCluster) {
return (Long) ((JedisCluster) nativeConnection).eval(UNLOCK_LUA, keys, args);
}
// 单机模式
else if (nativeConnection instanceof Jedis) {
return (Long) ((Jedis) nativeConnection).eval(UNLOCK_LUA, keys, args);
}
return 0L;
};
Long result = redisTemplate.execute(callback);
return result != null && result > 0;
} catch (Exception e) {
logger.error("release lock occured an exception", e);
} finally {
// 清除掉ThreadLocal中的数据,避免内存溢出
//lockFlag.remove();
}
return false;
}
/**
* 获取本机内网IP地址方法
*
* @return
*/
private static String getHostIp() {
try {
Enumeration<NetworkInterface> allNetInterfaces = NetworkInterface.getNetworkInterfaces();
while (allNetInterfaces.hasMoreElements()) {
NetworkInterface netInterface = (NetworkInterface) allNetInterfaces.nextElement();
Enumeration<InetAddress> addresses = netInterface.getInetAddresses();
while (addresses.hasMoreElements()) {
InetAddress ip = (InetAddress) addresses.nextElement();
if (ip != null
&& ip instanceof Inet4Address
&& !ip.isLoopbackAddress() //loopback地址即本机地址,IPv4的loopback范围是127.0.0.0 ~ 127.255.255.255
&& ip.getHostAddress().indexOf(":") == -1) {
return ip.getHostAddress();
}
}
}
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
}
那么现在还有一个问题:假如一个任务的时间特别长,超过了设定的超时时间,此时锁已经自动解除了,那我们最后解除的锁会不会是别人持有的锁?答案是:会的。
为了解决这个问题,我们在最后解除锁的时候,还得判断下此时的锁是否还是当初的锁。代码如下(注意加粗的部分):
@Component
public class JedisDistributedLock {
private final Logger logger = LoggerFactory.getLogger(JedisDistributedLock.class);
private static String LOCK_PREFIX = "JedisDistributedLock_";
private DefaultRedisScript<Boolean> lockScript;
@Resource
private RedisTemplate<Object, Object> redisTemplate;
@Autowired
private RedisService redisService;
public static final String UNLOCK_LUA;
static {
StringBuilder sb = new StringBuilder();
sb.append("if redis.call(\"get\",KEYS[1]) == ARGV[1] ");
sb.append("then ");
sb.append(" return redis.call(\"del\",KEYS[1]) ");
sb.append("else ");
sb.append(" return 0 ");
sb.append("end ");
UNLOCK_LUA = sb.toString();
}
@Scheduled(cron = "0/10 * * * * *")
public void lockJob() {
String lock = LOCK_PREFIX + "JedisNxExJob";
boolean lockRet = false;
try {
lockRet = this.setLock(lock, 600);
//获取锁失败
if (!lockRet) {
String value = (String) redisService.genValue(lock);
//打印当前占用锁的服务器IP
logger.info("jedisLockJob get lock fail,lock belong to:{}", value);
return;
} else {
//获取锁成功
logger.info("jedisLockJob start lock lockNxExJob success");
Thread.sleep(5000);
}
} catch (Exception e) {
logger.error("jedisLockJob lock error", e);
} finally {
if (lockRet) {
logger.info("jedisLockJob release lock success");
releaseLock(lock,getHostIp());
}
}
}
public boolean setLock(String key, long expire) {
try {
Boolean result = redisTemplate.execute(new RedisCallback<Boolean>() {
@Override
public Boolean doInRedis(RedisConnection connection) throws DataAccessException {
return connection.set(key.getBytes(), getHostIp().getBytes(), Expiration.seconds(expire) ,RedisStringCommands.SetOption.ifAbsent());
}
});
return result;
} catch (Exception e) {
logger.error("set redis occured an exception", e);
}
return false;
}
public String get(String key) {
try {
RedisCallback<String> callback = (connection) -> {
JedisCommands commands = (JedisCommands) connection.getNativeConnection();
return commands.get(key);
};
String result = redisTemplate.execute(callback);
return result;
} catch (Exception e) {
logger.error("get redis occured an exception", e);
}
return "";
}
/**
* 释放锁操作
* @param key
* @param value
* @return
*/
private boolean releaseLock(String key, String value) {
lockScript = new DefaultRedisScript<Boolean>();
lockScript.setScriptSource(
new ResourceScriptSource(new ClassPathResource("unlock.lua")));
lockScript.setResultType(Boolean.class);
// 封装参数
List<Object> keyList = new ArrayList<Object>();
keyList.add(key);
keyList.add(value);
Boolean result = (Boolean) redisTemplate.execute(lockScript, keyList);
return result;
}
/**
* 获取本机内网IP地址方法
*
* @return
*/
private static String getHostIp() {
try {
Enumeration<NetworkInterface> allNetInterfaces = NetworkInterface.getNetworkInterfaces();
while (allNetInterfaces.hasMoreElements()) {
NetworkInterface netInterface = (NetworkInterface) allNetInterfaces.nextElement();
Enumeration<InetAddress> addresses = netInterface.getInetAddresses();
while (addresses.hasMoreElements()) {
InetAddress ip = (InetAddress) addresses.nextElement();
if (ip != null
&& ip instanceof Inet4Address
&& !ip.isLoopbackAddress() //loopback地址即本机地址,IPv4的loopback范围是127.0.0.0 ~ 127.255.255.255
&& ip.getHostAddress().indexOf(":") == -1) {
return ip.getHostAddress();
}
}
}
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
}
unlock.lua 脚本的内容如下
local lockKey = KEYS[1]
local lockValue = KEYS[2]
-- get key
local result_1 = redis.call('get', lockKey)
if result_1 == lockValue
then
local result_2= redis.call('del', lockKey)
return result_2
else
return false
end
常见面试题:
问题一:什么是分布式锁?实现分布式锁的注意点?
同一时间同一资源只能被同一个应用操作。
首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下三个条件:
- 互斥性。在任意时刻,只有一个客户端能持有锁。
- 不会发生死锁。即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。
- 解铃还须系铃人。加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了
问题二:怎么实现分布式锁?
1、采用lua脚本操作分布式锁
- 从 Redis 2.6.0 版本开始,通过内置的 Lua 解释器,可以使用 EVAL 命令对 Lua 脚本进行求值。
- Redis 使用单个 Lua 解释器去运行所有脚本,并且, Redis 也保证脚本会以原子性(atomic)的方式执行:当某个脚本正在运行的时候,不会有其他脚本或 Redis 命令被执行。这和使用 MULTI / EXEC 包围的事务很类似。在其他别的客户端看来,脚本的效果(effect)要么是不可见的(not visible),要么就是已完成的(already completed)。
2、采用 setnx、setex 命令连用的方式实现分布式锁
问题三:解锁需要注意什么?
解铃还须系铃人。加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了
来源:https://www.cnblogs.com/jwen1994/p/12252719.html
