简单搜索
1.DFS
UVA 548 树
1.可以用数组方式实现二叉树,在申请结点时仍用“动态化静态”的思想,写newnode函数
2.给定二叉树的中序遍历和后序遍历,可以构造出这棵二叉树,方法是根据后序遍历找到根,然后在中序遍历中找到树根,从而找出左右子树的结点列表然后递归 构造左右子树
3.注意这里输入的模板,用stringstream会方便
#include<iostream>
#include<string>
#include<cmath>
#include<cstring>
#include<vector>
#include<map>
#include<set>
#include<algorithm>
#include<queue>
#include<stack>
#include<sstream>
#include<cstdio>
#define INF 0x3f3f3f3f
const int maxn = 1e6 + 5;
const double PI = acos(-1.0);
typedef long long ll;
using namespace std;
const int maxv = 10000 + 10;
int in_order[maxv], post_order[maxv], lch[maxv], rch[maxv];
int n;
bool read_list(int* a) {
string line;
if (!getline(cin, line)) return false;
stringstream ss(line);
n = 0;
int x;
while (ss >> x) a[n++] = x;
return n > 0;
}
int build(int L1, int R1, int L2, int R2) {
if (L1 > R1) return 0;
int root = post_order[R2];
int p = L1;
while (in_order[p] != root) p++;
int cnt = p - L1;
lch[root] = build(L1, p - 1, L2, L2 + cnt - 1);
rch[root] = build(p + 1, R1, L2 + cnt, R2 - 1);
return root;
}
int best, best_sum;
void dfs(int u, int sum) {
sum += u;
if (!lch[u] && !rch[u]) {
if (sum < best_sum || (sum == best_sum && u < best)) {
best = u;
best_sum = sum;
}
}
if (lch[u]) dfs(lch[u], sum);
if (rch[u]) dfs(rch[u], sum);
}
int main() {
while (read_list(in_order)) {
read_list(post_order);
build(0, n - 1, 0, n - 1);
best_sum = 10000000;
dfs(post_order[n - 1], 0);
cout << best << "\n";
}
return 0;
}
2000提高组-C 单词接龙
用substr判断能否接上
#include<iostream>
#include<string>
#include<cmath>
#include<cstring>
#include<vector>
#include<map>
#include<set>
#include<algorithm>
#include<queue>
#include<stack>
#include<sstream>
#include<cstdio>
#define INF 0x3f3f3f3f
const int maxn = 1e6 + 5;
const double PI = acos(-1.0);
typedef long long ll;
using namespace std;
string s[25];
int vis[25];
int Max=-1;
int n;
void dfs(string x, int len) {
Max = max(Max, len);
for (int i = 1; i <= n; i++) {
if (vis[i] == 2) continue;
int l1 = x.length();
int l2 = s[i].length();
int p = 1;
while (p < min(l1, l2))
if (x.substr(l1 - p) == s[i].substr(0, p)) break; else p++;
if (p < min(l1, l2)) {
vis[i]++;
dfs(x.substr(0,l1-p)+s[i], len + s[i].length()-p);
vis[i]--;
}
}
}
int main() {
std::ios::sync_with_stdio(0);
cin.tie(0);
cin >> n;
for (int i = 1; i <= n; i++) cin >> s[i];
cin >> s[0];
s[0] = "0" + s[0];
dfs(s[0], s[0].length());
cout << Max-1;
return 0;
}
回溯 N皇后问题 http://acm.hdu.edu.cn/showproblem.php?pid=2553
#include<iostream>
#include<string>
#include<cmath>
#include<cstring>
#include<vector>
#include<map>
#include<set>
#include<algorithm>
#include<queue>
#include<stack>
#include<sstream>
#include<cstdio>
#define INF 0x3f3f3f3f
const int maxn = 1e6 + 5;
const double PI = acos(-1.0);
typedef long long ll;
using namespace std;
int x[15], y[15]; //x[i]为第i行所在的列
int n1, ans;
bool place(int k) {
for (int i = 1; i < k; i++) {
if (abs(x[i] - x[k]) == abs(i - k) || x[i] == x[k]) return false;
}
return true;
} //判断位置是否可行
void dfs(int a) { //遍历到a行,共n1行
if (a > n1) ans++; //已经放了n1个皇后
else {
for (int i = 1; i <= n1; i++) {
x[a] = i;
if (place(a)) dfs(a + 1);
}
}
}
int main() {
int n;
for (int i = 1; i <= 10; i++) {
ans = 0;
n1 = i;
dfs(1);
y[i] = ans;
}
while (scanf("%d", &n), n) {
printf("%d\n", y[n]);
}
return 0;
}
BFS
BFS通常用队列实现,开一个vis数组标记是否访问过

如Catch That Cow http://poj.org/problem?id=3278 如果用DFS会TLE,考虑DFS
#include<iostream>
#include<string>
#include<cmath>
#include<cstring>
#include<vector>
#include<map>
#include<set>
#include<algorithm>
#include<queue>
#include<stack>
#include<sstream>
#include<cstdio>
#define INF 0x3f3f3f3f
const int maxn = 1e6 + 5;
const double PI = acos(-1.0);
const int N = 200100;
typedef long long ll;
using namespace std;
int n, k;
struct Node {
int x;
int step;
};
queue<Node> q;
int vis[N];
void bfs() {
int X, Step;
while (!q.empty()) {
Node Q = q.front();
q.pop();
X = Q.x;
Step = Q.step;
if (X == k) {
printf("%d", Step);
return;
}
if (X >= 1 && (!vis[X - 1])) {
Node p;
vis[X - 1] = true;
p.x = X - 1;
p.step = Step + 1;
q.push(p);
}
if (X <= k && (!vis[X + 1])) {
Node p;
vis[X + 1] = true;
p.x = X + 1;
p.step = Step + 1;
q.push(p);
}
if (X <= k && (!vis[X * 2])) {
Node p;
vis[X * 2] = true;
p.x = X * 2;
p.step = Step + 1;
q.push(p);
}
}
}
int main() {
scanf("%d%d", &n, &k);
Node NODE ;
NODE.x = n;
NODE.step = 0;
q.push(NODE);
bfs();
return 0;
}
回溯法一般是要找到一个(或者所有)满足约束的解(或者某种意义下的最优解),而状态空间搜索一般是要找到一个从初始状态到终止状态的路径
路径寻找问题可以归结为隐式图的遍历,它的任务是找到一条从初始状态到终止状态的最优路径,而不像回溯法那样找到一个符合某些条件的解。
八数码问题
#include<iostream>
#include<map>
#include<queue>
using namespace std;
queue<int>Q;
map<int,int>vis;//标记数组
map<int,int>step;//记录到这种状态的步数
int dir[4][2]={-1,0,0,1,1,0,0,-1};//上,右,下,左
int mat[3][3];
int state;//输入的初始状态
int r,c;
void input()//输入数据并将矩阵转化为一个九位整数
{
int tmp=0;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
{
cin>>mat[i][j];
tmp=tmp*10+mat[i][j];
}
state=tmp;
}
bool can_move(int u,int d)//判断是否可以走
{
for(int i=2;i>=0;i--)//将整数变回矩阵才好判断
{
for(int j=2;j>=0;j--)
{
mat[i][j]=u%10;
u/=10;
if(mat[i][j]==0)
{
r=i;
c=j;
}
}
}
//判断四个方向是否能走
if((d==0&&r==0)||(d==1&&c==2)||(d==2&&r==2)||(d==3&&c==0))
return 0;
return 1;
}
int move_to(int u,int d)//返回从状态u走到的状态
{
int tmp=0;
int nr=r+dir[d][0];
int nc=c+dir[d][1];
mat[r][c]=mat[nr][nc];
mat[nr][nc]=0;
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
tmp=tmp*10+mat[i][j];
}
return tmp;
}
int bfs(int s)
{
Q.push(s);
vis[s]=1;
step[s]=0;
while(Q.size())
{
int u,v;
u=Q.front();
Q.pop();
if(u==123456780)
return step[u];
for(int i=0;i<4;i++)
{
if(can_move(u,i))
{
v=move_to(u,i);
if(!vis[v])
{
vis[v]=1;
step[v]=step[u]+1;
Q.push(v);
}
}
}
}
return -1;
}
int main()
{
input();
int ans=bfs(state);
cout<<ans<<endl;
return 0;
}
来源:https://www.cnblogs.com/hznumqf/p/12243776.html