Sorting words in order of frequency? (least to greatest)

放肆的年华 提交于 2020-01-29 09:07:11

问题


does any one have any idea how to sort a list of words in the order of their frequency (least to greatest) using the built in collection.sort and a comparator<string> interface?

I already have a method that gets the count of a certain word in the text file. Now, I just need to create a method that compares the counts of each word and then puts them in a list sorted by the least frequency to the greatest.

Any ideas and tips would be very much appreciated. I'm having trouble getting started on this particular method.

public class Parser implements Comparator<String> {

    public Map<String, Integer> wordCount;

    void parse(String filename) throws IOException {
        File file = new File(filename);
        Scanner scanner = new Scanner(file);

        //mapping of string -> integer (word -> frequency)
        Map<String, Integer> wordCount = new HashMap<String, Integer>();

        //iterates through each word in the text file
        while(scanner.hasNext()) {
            String word = scanner.next();
            if (scanner.next()==null) {
                wordCount.put(word, 1);
            }
            else {
                wordCount.put(word, wordCount.get(word) + 1);;
                }
            }
            scanner.next().replaceAll("[^A-Za-z0-9]"," ");
            scanner.next().toLowerCase();
        }

    public int getCount(String word) {
        return wordCount.get(word);
    }

    public int compare(String w1, String w2) {
        return getCount(w1) - getCount(w2);
    } 

        //this method should return a list of words in order of frequency from least to   greatest
    public List<String> getWordsInOrderOfFrequency() {
        List<Integer> wordsByCount = new ArrayList<Integer>(wordCount.values());
        //this part is unfinished.. the part i'm having trouble sorting the word frequencies
        List<String> result = new ArrayList<String>();


    }
}

回答1:


First of all your usage of scanner.next() seems incorrect. next() will return the next word and move onto next one every time you call it, therefore the following code:

if(scanner.next() == null){ ... }

and also

scanner.next().replaceAll("[^A-Za-z0-9]"," ");
scanner.next().toLowerCase();

will consume and then just throw away words. What you probably want to do is:

String word = scanner.next().replaceAll("[^A-Za-z0-9]"," ").toLowerCase();

at the beginning of your while loop, so that the changes to your word are saved in the word variable, and not just thrown away.

Secondly, the usage of the wordCount map is slightly broken. What you want to do is to check if the word is already in the map to decide what word count to set. To do this, instead of checking for scanner.next() == null you should look in the map, for example:

if(!wordCount.containsKey(word)){
  //no count registered for the word yet
  wordCount.put(word, 1);
}else{
  wordCount.put(word, wordCount.get(word) + 1);
}

alternatively you can do this:

Integer count = wordCount.get(word);
if(count == null){
  //no count registered for the word yet
  wordCount.put(word, 1);
}else{
  wordCount.put(word, count+1);
}

I would prefer this approach, because it's a bit cleaner, and does only one map look-up per word, whereas the first approach sometimes does two look-ups.

Now, to get a list of words in descending order of frequencies, you can convert your map to a list first, then apply Collections.sort() as was suggested in this post. Below is a simplified version suited to your needs:

static List<String> getWordInDescendingFreqOrder(Map<String, Integer> wordCount) {

    // Convert map to list of <String,Integer> entries
    List<Map.Entry<String, Integer>> list = 
        new ArrayList<Map.Entry<String, Integer>>(wordCount.entrySet());

    // Sort list by integer values
    Collections.sort(list, new Comparator<Map.Entry<String, Integer>>() {
        public int compare(Map.Entry<String, Integer> o1, Map.Entry<String, Integer> o2) {
            // compare o2 to o1, instead of o1 to o2, to get descending freq. order
            return (o2.getValue()).compareTo(o1.getValue());
        }
    });

    // Populate the result into a list
    List<String> result = new ArrayList<String>();
    for (Map.Entry<String, Integer> entry : list) {
        result.add(entry.getKey());
    }
    return result;
}

Hope this helps.

Edit: Changed the comparison function as suggested by @dragon66. Thanks.




回答2:


You can compare and extract ideas from the following:

public class FrequencyCount {

    public static void main(String[] args) {

        // read in the words as an array
        String s = StdIn.readAll();
        // s = s.toLowerCase();
        // s = s.replaceAll("[\",!.:;?()']", "");
        String[] words = s.split("\\s+");

        // sort the words
        Merge.sort(words);

        // tabulate frequencies of each word
        Counter[] zipf = new Counter[words.length];
        int M = 0;                                        // number of distinct words
        for (int i = 0; i < words.length; i++) {
            if (i == 0 || !words[i].equals(words[i-1]))   // short-circuiting OR
                zipf[M++] = new Counter(words[i], words.length);
            zipf[M-1].increment();
        }

        // sort by frequency and print
        Merge.sort(zipf, 0, M);                           // sorting a subarray
        for (int j = M-1; j >= 0; j--) {
            StdOut.println(zipf[j]);
        }
    }
}



回答3:


A solution, close to your original posting with corrections and the sorting as suggested by Torious in the comments:

import java.util.*;

public class Parser implements Comparator <String> {

    public Map<String, Integer> wordCount;

    void parse ()
    {
        Scanner scanner = new Scanner (System.in);

        // don't redeclare it here - your attribute wordCount will else be shadowed
        wordCount = new HashMap<String, Integer> ();

        //iterates through each word in the text file
        while (scanner.hasNext ()) {
            String word = scanner.next ();
            // operate on the word, not on next and next of next word from Scanner
            word = word.replaceAll (" [^A-Za-z0-9]", " ");
            word = word.toLowerCase ();
            // look into your map:
            if (! wordCount.containsKey (word))
                wordCount.put (word, 1);
            else
                wordCount.put (word, wordCount.get (word) + 1);;
        }
    }

    public int getCount (String word) {
        return wordCount.get (word);
    }

    public int compare (String w1, String w2) {
        return getCount (w1) - getCount (w2);
    }

    public List<String> getWordsInOrderOfFrequency () {
        List<String> justWords = new ArrayList<String> (wordCount.keySet());
        Collections.sort (justWords, this);
        return justWords; 
    }

    public static void main (String args []) {
        Parser p = new Parser ();
        p.parse ();
        List<String> ls = p.getWordsInOrderOfFrequency ();
        for (String s: ls) 
            System.out.println (s);
    }
}



回答4:


rodions Solution is a kind of a Generics hell, but I don't have it simpler - just different.

In the End, his solution is shorter and better.

At the first looks, it seems that a TreeMap might be appropriate, but it sorts by Key, and is of no help for sorting by value, and we can't switch key-value, because we look it up by the key.

So the next idea is to generate a HashMap, and use Collections.sort, but it doesn't take a Map, just Lists for sorting. From a Map, there is entrySet, which produces another Collection, which is a Set, and not a List. That was the point where I took another direction:

I implemented an Iterator: I iterate over the entrySet, and only return Keys, where the value is 1. If the value is 2, I buffer them for later use. If the Iterator is exhausted, I look into the buffer, and if it isn't empty, I use the iterator of the buffer in future, increment the minimum value I look for, and create a new Buffer.

The advantage of an Iterator/Iterable pair is, that the values can be obtained by the simplified for-loop.

import java.util.*;

// a short little declaration :) 
public class WordFreq implements Iterator <Map.Entry <String, Integer>>, Iterable <Map.Entry <String, Integer>>
{
    private Map <String, Integer> counter;
    private Iterator <Map.Entry <String, Integer>> it;
    private Set <Map.Entry <String, Integer>> buf;
    private int maxCount = 1; 

    public Iterator <Map.Entry <String, Integer>> iterator () {
        return this;
    }

    // The iterator interface expects a "remove ()" - nobody knows why
    public void remove ()
    {
        if (hasNext ())
            next ();
    } 

    public boolean hasNext ()
    {
        return it.hasNext () || ! buf.isEmpty ();
    }

    public Map.Entry <String, Integer> next ()
    {
        while (it.hasNext ()) {
            Map.Entry <String, Integer> mesi = it.next ();
            if (mesi.getValue () == maxCount)
                return mesi;
            else
                buf.add (mesi);
        }
        if (buf.isEmpty ())
            return null;
        ++maxCount;
        it = buf.iterator (); 
        buf = new HashSet <Map.Entry <String, Integer>> ();     
        return next ();
    } 

    public WordFreq ()
    {
        it = fill ();
        buf = new HashSet <Map.Entry <String, Integer>> ();
        // The "this" here has to be an Iterable to make the foreach work
        for (Map.Entry <String, Integer> mesi : this)
        {
            System.out.println (mesi.getValue () + ":\t" + mesi.getKey ());
        }
    }

    public Iterator <Map.Entry <String, Integer>> fill ()
    {
        counter = new HashMap <String, Integer> ();
        Scanner sc = new Scanner (System.in);
        while (sc.hasNext ())
        {
            push (sc.next ());
        }
        Set <Map.Entry <String, Integer>> set = counter.entrySet ();
        return set.iterator ();
    }

    public void push (String word)
    {
        Integer i = counter.get (word);
        int n = 1 + ((i != null) ? i : 0); 
        counter.put (word, n);
    }

    public static void main (String args[])
    {
        new WordFreq ();
    }
}

Since my solution reads from stdin, you invoke it with:

cat WordFreq.java | java WordFreq


来源:https://stackoverflow.com/questions/10158793/sorting-words-in-order-of-frequency-least-to-greatest

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!