问题
I have convolutional neural network in Keras. I need to know the dimensions of the feature maps in each layer. My input is 28 by 28 pixel image. I know theres a way to calculate this I not sure how. Below is my code snippet using Keras.
img_rows, img_cols = 28, 28
nb_filters = 32
nb_pool = 2
nb_conv = 3
model = Sequential()
model.add(Convolution2D(nb_filters, nb_conv, nb_conv, border_mode='valid', input_shape=(1, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, nb_conv, nb_conv))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, nb_conv, nb_conv, border_mode='valid'))
model.add(Activation('relu'))
model.add(Convolution2D(64, nb_conv, nb_conv))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
At the end of the day, this is what i want to draw. Thank you.
回答1:
Check this article.
Formula for spatial size of the output volume: K*((W−F+2P)/S+1), where W - input volume size, F the receptive field size of the Conv Layer neurons, S - the stride with which they are applied, P - the amount of zero padding used on the border, K - the depth of conv layer.
来源:https://stackoverflow.com/questions/34739151/calculate-dimension-of-feature-maps-in-convolutional-neural-network