HDU 2824 The Euler function(欧拉函数)

不想你离开。 提交于 2020-01-24 00:27:11

Problem Description

The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)

 

Input

There are several test cases. Each line has two integers a, b (2<a<b<3000000).

 

Output

Output the result of (a)+ (a+1)+....+ (b)

 

Sample Input

3 100

 

Sample Output

3042

 

题意:

给两个数a和b,求这两个数之间的数的欧拉函数值之和

 

思路:

利用欧拉函数和它本身不同质因数的关系,用筛法计算出某个范围内所有数的欧拉函数值。

(p是数N的质因数

 

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL long long
#define max 3000010
LL la[max];
void eular()
{
	int i,j;
	la[1]=0;
	for(i=2;i<max;++i)
		la[i]=i;
	for(i=2;i<max;++i)
	{
		if(la[i]==i)
		{
			for(j=i;j<max;j=j+i)
				la[j]=la[j]/i*(i-1);
		}
	}
	for(i=2;i<max;++i)
		la[i]=la[i]+la[i-1];
}

int main()
{
	eular();
    int a,b;
    LL sum=0;
    while(~scanf("%d%d",&a,&b))
    {
	    int i,j;
		sum=la[b]-la[a-1];
		printf("%lld\n",sum);
	}
}

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!