题目:
Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2] Output: 5 Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
分析:
求出最长递增子序列的个数,我们使用lens[i]表示以nums[i]为结尾的递增子序列中元素的个数也就是长度,以time[i]表示以nums[i]为结尾的递增子序列出现的次数,遍历nums数组,维护这两个数组。
遍历nums[i]这个元素,都要和i前面的元素进行比较(用j进行遍历),如果nums[i]大于nums[j],意味着nums[i]可以拼接到nums[j]后面,产生一个更长的子序列,如果lens[i] < lens[j] +1,更新lens数组lens[i] = lens[j]+1,同时times[i] = times[j]。
如果lens[i]恰好等于lens[j] +1,意味着此时已经有和当前长度相同的子序列了,我们要更新times[i] += times[j],因为以nums[i]为结尾的子序列(长度为lens[i])已经出现过了,我们要加上出现的次数。
最后统计最大长度出现的次数,返回答案即可。
程序:
C++
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
auto lens = vector<int>(nums.size(), 1);
auto times = vector<int>(nums.size(), 1);
for(int i = 1; i < nums.size(); ++i){
for(int j = 0; j < i; ++j){
if(nums[j] >= nums[i])
continue;
if(lens[j] + 1 > lens[i]){
lens[i] = lens[j] + 1;
times[i] = times[j];
}
else if(lens[j] + 1 == lens[i])
times[i] += times[j];
}
}
int maxLen = 0;
int res = 0;
for(int i = 0; i < lens.size(); ++i){
if(maxLen < lens[i]){
maxLen = lens[i];
res = times[i];
}
else if(lens[i] == maxLen)
res += times[i];
}
return res;
}
};
Java
class Solution {
public int findNumberOfLIS(int[] nums) {
if(nums.length == 0)
return 0;
int[] lens = new int[nums.length];
int[] times = new int[nums.length];
int maxLen = 1;
for(int i = 0; i < nums.length; ++i){
lens[i] = 1;
times[i] = 1;
for(int j = 0; j < i; ++j){
if(nums[i] <= nums[j])
continue;
if(lens[j] + 1 > lens[i]){
lens[i] = lens[j] + 1;
times[i] = times[j];
}
else if(lens[j] + 1 == lens[i]){
times[i] += times[j];
}
}
maxLen = Math.max(maxLen, lens[i]);
}
int res = 0;
for(int i = 0; i < lens.length; ++i){
if(lens[i] == maxLen)
res += times[i];
}
return res;
}
}
来源:https://www.cnblogs.com/silentteller/p/12206983.html