Matplotlib boxplot using precalculated (summary) statistics

若如初见. 提交于 2019-11-27 13:18:21

问题


I need to do a boxplot (in Python and matplotlib) but I do not have the original "raw" data. What I have are precalculated values for max, min, mean, median and IQR (normal distribution) but still I'd like to do a boxplot. Of course plotting outliers isn't possible, but beside that I guess all information is there.

I've search all over to find an answer without success. The closest I've come is the same question but for R (which I'm unfamiliar with). See Is it possible to plot a boxplot from previously-calculated statistics easily (in R?)

Can anyone show me how to do the boxplot?

Many thanks!


回答1:


In the old versions, you have to manually do it by changing boxplot elements individually:

Mean=[3.4] #mean
IQR=[3.0,3.9] #inter quantile range
CL=[2.0,5.0] #confidence limit
A=np.random.random(50)
D=plt.boxplot(A) # a simple case with just one variable to boxplot
D['medians'][0].set_ydata(Mean)
D['boxes'][0]._xy[[0,1,4], 1]=IQR[0]
D['boxes'][0]._xy[[2,3],1]=IQR[1]
D['whiskers'][0].set_ydata(np.array([IQR[0], CL[0]]))
D['whiskers'][1].set_ydata(np.array([IQR[1], CL[1]]))
D['caps'][0].set_ydata(np.array([CL[0], CL[0]]))
D['caps'][1].set_ydata(np.array([CL[1], CL[1]]))
_=plt.ylim(np.array(CL)+[-0.1*np.ptp(CL), 0.1*np.ptp(CL)]) #reset the limit




回答2:


Thanks to the comment of @tacaswell I was able to find the required documentation and come up with an example using Matplotlib 1.4.3. However, this example does not automatically scale the figure to the correct size.

import matplotlib.pyplot as plt

item = {}

item["label"] = 'box' # not required
item["mean"] = 5 # not required
item["med"] = 5.5
item["q1"] = 3.5
item["q3"] = 7.5
#item["cilo"] = 5.3 # not required
#item["cihi"] = 5.7 # not required
item["whislo"] = 2.0 # required
item["whishi"] = 8.0 # required
item["fliers"] = [] # required if showfliers=True

stats = [item]

fig, axes = plt.subplots(1, 1)
axes.bxp(stats)
axes.set_title('Default')
y_axis = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
y_values = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
plt.yticks(y_axis, y_values)

Relevant links to the documentation:

  • Axes.bxp() function
  • boxplot_stats datastructure
  • other examples using Axes.bxp



回答3:


Referring to the answer of @MKroehnert and Boxplot drawer function at https://matplotlib.org/gallery/statistics/bxp.html, the following could be helpful:

import matplotlib.pyplot as plt

stats = [{
    "label": 'A',  # not required
    "mean":  5,  # not required
    "med": 5.5,
    "q1": 3.5,
    "q3": 7.5,
    # "cilo": 5.3 # not required
    # "cihi": 5.7 # not required
    "whislo": 2.0,  # required
    "whishi": 8.0,  # required
    "fliers": []  # required if showfliers=True
    }]

fs = 10  # fontsize

fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(6, 6), sharey=True)
axes.bxp(stats)
axes.set_title('Boxplot for precalculated statistics', fontsize=fs)
plt.show()


来源:https://stackoverflow.com/questions/23655798/matplotlib-boxplot-using-precalculated-summary-statistics

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!