Python线程
Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 import threading 4 import time 5 6 def show(arg): 7 time.sleep(1) 8 print 'thread'+str(arg) 9 10 for i in range(10): 11 t = threading.Thread(target=show, args=(i,)) 12 t.start() 13 14 print 'main thread stop'
上述代码创建了10个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。
更多方法:
- start 线程准备就绪,等待CPU调度
- setName 为线程设置名称
- getName 获取线程名称
- setDaemon 设置为后台线程或前台线程(默认)
如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止
如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止 - join 逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
- run 线程被cpu调度后执行Thread类对象的run方法
线程锁
由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,CPU接着执行其他线程。所以,可能出现如下问题:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import threading
import time
gl_num = 0
def show(arg):
global gl_num
time.sleep(1)
gl_num +=1
print gl_num
for i in range(10):
t = threading.Thread(target=show, args=(i,))
t.start()
print 'main thread stop'
使用锁:
#!/usr/bin/env python
#coding:utf-8
import threading
import time
gl_num = 0
lock = threading.RLock()
def Func():
lock.acquire()
global gl_num
gl_num +=1
time.sleep(1)
print gl_num
lock.release()
for i in range(10):
t = threading.Thread(target=Func)
t.start()
事件
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。
事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。
- clear:将“Flag”设置为False
- set:将“Flag”设置为True
1 #!/usr/bin/env python
2 # -*- coding:utf-8 -*-
3
4 import threading
5
6
7 def do(event):
8 print 'start'
9 event.wait()
10 print 'execute'
11
12
13 event_obj = threading.Event()
14 for i in range(10):
15 t = threading.Thread(target=do, args=(event_obj,))
16 t.start()
17
18 event_obj.clear()
19 inp = raw_input('input:')
20 if inp == 'true':
21 event_obj.set()
Python 进程
1 from multiprocessing import Process 2 import threading 3 import time 4 5 def foo(i): 6 print 'say hi',i 7 8 for i in range(10): 9 p = Process(target=foo,args=(i,)) 10 p.start()
注意:由于进程之间的数据需要各自持有一份,所以创建进程需要的非常大的开销。
进程数据共享
进程各自持有一份数据,默认无法共享数据

#!/usr/bin/env python
#coding:utf-8
from multiprocessing import Process
from multiprocessing import Manager
import time
li = []
def foo(i):
li.append(i)
print 'say hi',li
for i in range(10):
p = Process(target=foo,args=(i,))
p.start()
print 'ending',li
进程间默认无法数据共享
1 #方法一,Array
2 from multiprocessing import Process,Array
3 temp = Array('i', [11,22,33,44])
4
5 def Foo(i):
6 temp[i] = 100+i
7 for item in temp:
8 print i,'----->',item
9
10 for i in range(2):
11 p = Process(target=Foo,args=(i,))
12 p.start()
13
14 #方法二:manage.dict()共享数据
15 from multiprocessing import Process,Manager
16
17 manage = Manager()
18 dic = manage.dict()
19
20 def Foo(i):
21 dic[i] = 100+i
22 print dic.values()
23
24 for i in range(2):
25 p = Process(target=Foo,args=(i,))
26 p.start()
27 p.join()

'c': ctypes.c_char, 'u': ctypes.c_wchar,
'b': ctypes.c_byte, 'B': ctypes.c_ubyte,
'h': ctypes.c_short, 'H': ctypes.c_ushort,
'i': ctypes.c_int, 'I': ctypes.c_uint,
'l': ctypes.c_long, 'L': ctypes.c_ulong,
'f': ctypes.c_float, 'd': ctypes.c_double
当创建进程时(非使用时),共享数据会被拿到子进程中,当进程中执行完毕后,再赋值给原值。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from multiprocessing import Process, Array, RLock
def Foo(lock,temp,i):
"""
将第0个数加100
"""
lock.acquire()
temp[0] = 100+i
for item in temp:
print i,'----->',item
lock.release()
lock = RLock()
temp = Array('i', [11, 22, 33, 44])
for i in range(20):
p = Process(target=Foo,args=(lock,temp,i,))
p.start()
进程锁实例
进程池
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
进程池中有两个方法:
- apply
- apply_async
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 from multiprocessing import Process,Pool 4 import time 5 6 def Foo(i): 7 time.sleep(2) 8 return i+100 9 10 def Bar(arg): 11 print arg 12 13 pool = Pool(5) 14 #print pool.apply(Foo,(1,)) 15 #print pool.apply_async(func =Foo, args=(1,)).get() 16 17 for i in range(10): 18 pool.apply_async(func=Foo, args=(i,),callback=Bar) 19 20 print 'end' 21 pool.close() 22 pool.join()#进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。
协程
线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。
协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。
协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;
greenlet
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 4 5 from greenlet import greenlet 6 7 8 def test1(): 9 print 12 10 gr2.switch() 11 print 34 12 gr2.switch() 13 14 15 def test2(): 16 print 56 17 gr1.switch() 18 print 78 19 20 gr1 = greenlet(test1) 21 gr2 = greenlet(test2) 22 gr1.switch()
gevent
1 import gevent
2
3 def foo():
4 print('Running in foo')
5 gevent.sleep(0)
6 print('Explicit context switch to foo again')
7
8 def bar():
9 print('Explicit context to bar')
10 gevent.sleep(0)
11 print('Implicit context switch back to bar')
12
13 gevent.joinall([
14 gevent.spawn(foo),
15 gevent.spawn(bar),
16 ])
遇到IO操作自动切换:

1 from gevent import monkey; monkey.patch_all()
2 import gevent
3 import urllib2
4
5 def f(url):
6 print('GET: %s' % url)
7 resp = urllib2.urlopen(url)
8 data = resp.read()
9 print('%d bytes received from %s.' % (len(data), url))
10
11 gevent.joinall([
12 gevent.spawn(f, 'https://www.python.org/'),
13 gevent.spawn(f, 'https://www.yahoo.com/'),
14 gevent.spawn(f, 'https://github.com/'),
15 ])
参考:http://www.cnblogs.com/wupeiqi/articles/5040827.html
来源:https://www.cnblogs.com/fanweibin/p/5081936.html
