darknet_AlexeyAB_191221 - person - yolov3-tiny

本秂侑毒 提交于 2020-01-10 04:17:49

darknet_AlexeyAB_191221 - person - yolov3-tiny

1. anchors

2. yolov3-tiny.data

/home/yongqiang/darknet_work/darknet_AlexeyAB_191221/darknet-master/data/yolov3-tiny.data

classes= 1
train = /media/famu/DISK_DEEP/yongqiang/yolov3-tiny_prn/yolov3-tiny_prn.txt
# valid  = /media/famu/DISK_DEEP/yongqiang/yolov3-tiny_prn/training_validation_test_sets_person_v0.txt
valid  = /media/famu/DISK_DEEP/yongqiang/yolov3-tiny_prn/training_validation_test_sets_person_v0.txt
names = data/yolov3-tiny.names
backup = /media/famu/DISK_DATA/yongqiang/backup_yolov3-tiny
eval=coco

3. yolov3-tiny.names

/home/yongqiang/darknet_work/darknet_AlexeyAB_191221/darknet-master/data/yolov3-tiny.names

person

4. To calculate anchors

./darknet detector calc_anchors data/yolov3-tiny.data -num_of_clusters 8 -width 608 -height 608

(base) yongqiang@famu-sys:~/darknet_work/darknet_AlexeyAB_191221/darknet-master$ ./darknet detector calc_anchors data/yolov3-tiny.data -num_of_clusters 8 -width 608 -height 608

 num_of_clusters = 8, width = 608, height = 608 
 read labels from 130656 images 
 loaded 	 image: 130656 	 box: 1434742
 all loaded. 

 calculating k-means++ ...

 iterations = 133 


 avg IoU = 73.83 % 

Saving anchors to the file: anchors.txt 
anchors =  11, 42,  17, 75,  23,115,  33, 80,  35,155,  57,210, 119,347, 281,485
^C
(base) yongqiang@famu-sys:~/darknet_work/darknet_AlexeyAB_191221/darknet-master$ 

5. Training - ./darknet detector train ./train_cfg/yolov3-tiny.data ./train_cfg/yolov3-tiny.cfg -gpus 0,1,2,3 -map

Just train with -map flag:

darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -map

So you will see mAP-chart (red-line) in the Loss-chart Window. mAP will be calculated for each 4 Epochs using valid=valid.txt file that is specified in obj.data file (1 Epoch = images_in_train_txt / batch iterations)
(to change the max x-axis value - change max_batches= parameter to 2000*classes, f.e. max_batches=6000 for 3 classes)



6. mAP

[net]
# Testing
# batch=1
# subdivisions=1
# Training
batch=64
subdivisions=16
width=608
height=608
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1

learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
......
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!