Val_accuracy (val_acc) very low [closed]

跟風遠走 提交于 2020-01-07 08:32:20

问题


We have a data set that is converted from signal data to video. We want to classify these images using convolution. We tried many different methods but val acc is consistently low. Training accuracy is 99% and val_acc is 40%. We need your help in this respect. Thank you

weight_decay=0.0005
input_ = Input(shape=(125, 125, 1))
# Block 1
x = Conv2D(64, (3, 3), strides=(1, 1), activation='relu', padding='same')(input_)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2), strides=(2, 2), padding='same', name='pool1')(x)

# Block 2
x = Conv2D(128, (3, 3), strides=(1, 1), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2), strides=(2, 2), padding='same', name='pool2')(x)

# Block 3
x = Conv2D(256, (3, 3), strides=(1, 1), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
x = Conv2D(256, (3, 3), strides=(1, 1), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2), strides=(2, 2), padding='same', name='pool3')(x)

# Block 4
x = Conv2D(512, (3, 3), strides=(1, 1), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
x = Conv2D(512, (3, 3), strides=(1, 1), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2), strides=(2, 2), padding='same', name='pool4')(x)
x = GlobalMaxPooling2D()(x)

x = Dense(800)(x)
x = BatchNormalization()(x)
x = Dense(800)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dense(8)(x)
x = Activation('softmax')(x)
model = Model(inputs = input_, outputs=x)

enter image description here

my kernel and dataset https://www.kaggle.com/ultrasonraporlama/video-kernel/

来源:https://stackoverflow.com/questions/59540574/val-accuracy-val-acc-very-low

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!