问题
Given a pandas crosstab, how do you convert that into a stacked dataframe?
Assume you have a stacked dataframe. First we convert it into a crosstab. Now I would like to revert back to the original stacked dataframe. I searched a problem statement that addresses this requirement, but could not find any that hits bang on. In case I have missed any, please leave a note to it in the comment section.
I would like to document the best practice here. So, thank you for your support.
I know that pandas.DataFrame.stack() would be the best approach. But one needs to be careful of the the "level" stacking is applied to.
Input: Crosstab:
Label a b c d r
ID
1 0 1 0 0 0
2 1 1 0 1 1
3 1 0 0 0 1
4 1 0 0 1 0
6 1 0 0 0 0
7 0 0 1 0 0
8 1 0 1 0 0
9 0 1 0 0 0
Output: Stacked DataFrame:
ID Label
0 1 b
1 2 a
2 2 b
3 2 d
4 2 r
5 3 a
6 3 r
7 4 a
8 4 d
9 6 a
10 7 c
11 8 a
12 8 c
13 9 b
Step-by-step Explanation:
First, let's make a function that would create our data. Note that it randomly generates the stacked dataframe, and so, the final output may differ from what I have given below.
Helper Function: Make the Stacked And Crosstab DataFrames
import numpy as np
import pandas as pd
# Make stacked dataframe
def _create_df():
"""
This dataframe will be used to create a crosstab
"""
B = np.array(list('abracadabra'))
A = np.arange(len(B))
AB = list()
for i in range(20):
a = np.random.randint(1,10)
b = np.random.randint(1,10)
AB += [(a,b)]
AB = np.unique(np.array(AB), axis=0)
AB = np.unique(np.array(list(zip(A[AB[:,0]], B[AB[:,1]]))), axis=0)
AB_df = pd.DataFrame({'ID': AB[:,0], 'Label': AB[:,1]})
return AB_df
original_stacked_df = _create_df()
# Make crosstab
crosstab_df = pd.crosstab(original_stacked_df['ID'],
original_stacked_df['Label']).reindex()
What to expect?
You would expect a function to regenerate the stacked dataframe from the crosstab. I would provide my own solution to this in the answer section. If you could suggest something better that would be great.
Other References:
- Closest stackoverflow discussion: pandas stacking a dataframe
- Misleading stackoverflow question-topic: change pandas crossstab dataframe into plain table format:
回答1:
You can just do stack
df[df.astype(bool)].stack().reset_index().drop(0,1)
回答2:
The following produces the desired outcome.
def crosstab2stacked(crosstab):
stacked = crosstab.stack(dropna=True).reset_index()
stacked = stacked[stacked.replace(0,np.nan)[0].notnull()].drop(columns=[0])
return stacked
# Make original dataframe
original_stacked_df = _create_df()
# Make crosstab dataframe
crosstab_df = pd.crosstab(original_stacked_df['ID'],
original_stacked_df['Label']).reindex()
# Recontruct stacked dataframe
recon_stacked_df = crosstab2stacked(crosstab = crosstab_df)
Check if original == reconstructed
:
np.alltrue(original_stacked_df == recon_stacked_df)
Output: True
来源:https://stackoverflow.com/questions/57583269/converting-a-pandas-crosstab-into-a-stacked-dataframe-a-regular-table