问题
I have a Pandas multiindex dataframe and I need to assign values to one of the columns from a series. The series shares its index with the first level of the index of the dataframe.
import pandas as pd
import numpy as np
idx0 = np.array(['bar', 'bar', 'bar', 'baz', 'foo', 'foo'])
idx1 = np.array(['one', 'two', 'three', 'one', 'one', 'two'])
df = pd.DataFrame(index = [idx0, idx1], columns = ['A', 'B'])
s = pd.Series([True, False, True],index = np.unique(idx0))
print df
print s
out:
A B
bar one NaN NaN
two NaN NaN
three NaN NaN
baz one NaN NaN
foo one NaN NaN
two NaN NaN
bar True
baz False
foo True
dtype: bool
These don't work:
df.A = s # does not raise an error, but does nothing
df.loc[s.index,'A'] = s # raises an error
expected output:
A B
bar one True NaN
two True NaN
three True NaN
baz one False NaN
foo one True NaN
two True NaN
回答1:
Series (and dictionaries) can be used just like functions with map and apply (thanks to @normanius for improving the syntax):
df['A'] = pd.Series(df.index.get_level_values(0)).map(s).values
Or similarly:
df['A'] = df.reset_index(level=0)['level_0'].map(s).values
Results:
A B
bar one True NaN
two True NaN
three True NaN
baz one False NaN
foo one True NaN
two True NaN
来源:https://stackoverflow.com/questions/30117838/assigning-values-to-pandas-multiindex-dataframe-by-index-level