splay启发式合并
启发式合并其实就是把集合数量小的合并到集合数量大的里去。
怎么合并呢,直接一个一个插入就行了。。
用并查集维护连通性,find(i)可以找到所在splay的编号
这题好像还可以合并线段树来写,下次再补上。。
#include <bits/stdc++.h> #define INF 0x3f3f3f3f #define full(a, b) memset(a, b, sizeof a) using namespace std; typedef long long ll; inline int lowbit(int x){ return x & (-x); } inline int read(){ int X = 0, w = 0; char ch = 0; while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); } while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar(); return w ? -X : X; } inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; } inline int lcm(int a, int b){ return a / gcd(a, b) * b; } template<typename T> inline T max(T x, T y, T z){ return max(max(x, y), z); } template<typename T> inline T min(T x, T y, T z){ return min(min(x, y), z); } template<typename A, typename B, typename C> inline A fpow(A x, B p, C lyd){ A ans = 1; for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd; return ans; } const int N = 100005; int n, m, tot, fa[N<<5], ch[N<<5][2], size[N<<5], val[N<<5], root[N], parent[N], pos[N]; int find(int p){ while(p != parent[p]) parent[p] = parent[parent[p]], p = parent[p]; return p; } bool isConnect(int p, int q){ return find(p) == find(q); } int init(int v, int f){ ++tot; size[tot] = 1, val[tot] = v, fa[tot] = f; ch[tot][0] = ch[tot][1] = 0; return tot; } void push_up(int x){ size[x] = size[ch[x][0]] + size[ch[x][1]] + 1; } void rotate(int x){ int y = fa[x], z = fa[y], p = (ch[y][1] == x) ^ 1; ch[y][p^1] = ch[x][p], fa[ch[x][p]] = y; ch[z][ch[z][1] == y] = x, fa[x] = z; ch[x][p] = y, fa[y] = x; push_up(y), push_up(x); } void splay(int rt, int x, int goal){ if(x == goal) return; while(fa[x] != goal){ int y = fa[x], z = fa[y]; if(z != goal){ (ch[y][0] == x) ^ (ch[z][0] == y) ? rotate(x) : rotate(y); } rotate(x); } push_up(x); if(goal == 0) root[rt] = x; } int select(int rt, int k){ if(!root[rt]) return 0; int cur = root[rt], p = size[ch[root[rt]][0]]; while(1){ if(p + 1 < k){ k -= p + 1; cur = ch[cur][1]; } else{ if(p + 1 == k) return val[cur]; cur = ch[cur][0]; } p = size[ch[cur][0]]; } } void insert(int rt, int x){ if(!root[rt]){ root[rt] = init(x, 0); return; } int cur = root[rt]; while(ch[cur][x > val[cur]]){ if(val[cur] == x) break; cur = ch[cur][x > val[cur]]; } if(val[cur] == x){ splay(rt, cur, 0); return; } ch[cur][x > val[cur]] = init(x, cur); splay(rt, ch[cur][x > val[cur]], 0); } void dfs(int x, int y){ if(!x) return; dfs(ch[x][0], y); dfs(ch[x][1], y); insert(y, val[x]); } void merge(int x, int y){ int fx = find(x), fy = find(y); if(fx == fy) return; if(size[root[fx]] > size[root[fy]]) swap(fx, fy); parent[fx] = fy; dfs(root[fx], fy); } int main(){ n = read(), m = read(); for(int i = 0; i <= n; i ++) parent[i] = i; for(int i = 1; i <= n; i ++){ int v = read(); root[i] = init(v, 0); pos[v] = i; } for(int i = 0; i < m; i ++){ int x = read(), y = read(); if(isConnect(x, y)) continue; merge(x, y); } int q = read(); while(q --){ char opt[5]; scanf("%s", opt); int x = read(), y = read(); if(opt[0] == 'B'){ if(isConnect(x, y)) continue; merge(x, y); } else if(opt[0] == 'Q'){ if(size[root[find(x)]] < y) printf("-1\n"); else printf("%d\n", pos[select(find(x), y)]); } } return 0; }
写个下动态开点的权值线段树,为啥跑出来比splay还要慢啊!这么玄学的吗。。
#include <bits/stdc++.h> #define INF 0x3f3f3f3f #define full(a, b) memset(a, b, sizeof a) using namespace std; typedef long long ll; inline int lowbit(int x){ return x & (-x); } inline int read(){ int X = 0, w = 0; char ch = 0; while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); } while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar(); return w ? -X : X; } inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; } inline int lcm(int a, int b){ return a / gcd(a, b) * b; } template<typename T> inline T max(T x, T y, T z){ return max(max(x, y), z); } template<typename T> inline T min(T x, T y, T z){ return min(min(x, y), z); } template<typename A, typename B, typename C> inline A fpow(A x, B p, C lyd){ A ans = 1; for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd; return ans; } const int N = 100005; int n, m, tot; int tree[N<<5], root[N], lc[N<<5], rc[N<<5], pos[N], parent[N]; int find(int p){ while(p != parent[p]) parent[p] = parent[parent[p]], p = parent[p]; return p; } int build(){ ++tot; tree[tot] = lc[tot] = rc[tot] = 0; return tot; } void push_up(int x){ tree[x] = tree[lc[x]] + tree[rc[x]]; } void modify(int rt, int l, int r, int k){ if(l == r){ tree[rt] ++; return; } int mid = (l + r) >> 1; if(k <= mid){ if(!lc[rt]) lc[rt] = build(); modify(lc[rt], l, mid, k); } else{ if(!rc[rt]) rc[rt] = build(); modify(rc[rt], mid + 1, r, k); } push_up(rt); } int merge(int x, int y, int l, int r){ if(!x) return y; if(!y) return x; if(l == r){ tree[x] += tree[y]; return x; } int mid = (l + r) >> 1; lc[x] = merge(lc[x], lc[y], l, mid); rc[x] = merge(rc[x], rc[y], mid + 1, r); push_up(x); return x; } int query(int rt, int l, int r, int k){ if(l == r) return l; int mid = (l + r) >> 1; if(k <= tree[lc[rt]]) return query(lc[rt], l, mid, k); return query(rc[rt], mid + 1, r, k - tree[lc[rt]]); } int main(){ n = read(), m = read(); for(int i = 0; i <= n; i ++) parent[i] = i; for(int i = 1; i <= n; i ++){ int v = read(); pos[v] = i, root[i] = build(), modify(root[i], 1, n, v); } for(int i = 0; i < m; i ++){ int x = read(), y = read(); int fx = find(x), fy = find(y); if(fx == fy) continue; parent[fy] = fx; root[fx] = merge(root[fx], root[fy], 1, n); } int q = read(); while(q --){ char opt[10]; scanf("%s", opt); if(opt[0] == 'B'){ int x = read(), y = read(); int fx = find(x), fy = find(y); if(fx == fy) continue; parent[fy] = fx; root[fx] = merge(root[fx], root[fy], 1, n); } else if(opt[0] == 'Q'){ int x = read(), k = read(); if(tree[root[find(x)]] < k) printf("-1\n"); else printf("%d\n", pos[query(root[find(x)], 1, n, k)]); } } return 0; }
来源:https://www.cnblogs.com/onionQAQ/p/10771171.html