问题
I need the index to start at 1 rather than 0 when writing a Pandas DataFrame to CSV.
Here's an example:
In [1]: import pandas as pd
In [2]: result = pd.DataFrame({'Count': [83, 19, 20]})
In [3]: result.to_csv('result.csv', index_label='Event_id')
Which produces the following output:
In [4]: !cat result.csv
Event_id,Count
0,83
1,19
2,20
But my desired output is this:
In [5]: !cat result2.csv
Event_id,Count
1,83
2,19
3,20
I realize that this could be done by adding a sequence of integers shifted by 1 as a column to my data frame, but I'm new to Pandas and I'm wondering if a cleaner way exists.
回答1:
Index is an object, and default index starts from 0:
>>> result.index
Int64Index([0, 1, 2], dtype=int64)
You can shift this index by 1 with
>>> result.index += 1
>>> result.index
Int64Index([1, 2, 3], dtype=int64)
回答2:
Just set the index before writing to CSV.
df.index = np.arange(1, len(df))
And then write it normally.
回答3:
This worked for me
df.index = np.arange(1, len(df)+1)
回答4:
source: In Python pandas, start row index from 1 instead of zero without creating additional column
Working example:
import pandas as pdas
dframe = pdas.read_csv(open(input_file))
dframe.index = dframe.index + 1
回答5:
Another way in one line:
df.shift()[1:]
回答6:
You can use this one:
import pandas as pd
result = pd.DataFrame({'Count': [83, 19, 20]})
result.index += 1
print(result)
or this one, by getting the help of numpy library like this:
import pandas as pd
import numpy as np
result = pd.DataFrame({'Count': [83, 19, 20]})
result.index = np.arange(1, len(result)+1)
print(result)
np.arange will create a numpy array and return values within a given interval which is (1, len(result)+1) and finally you will assign that array to result.index.
回答7:
Fork from the original answer, giving some cents:
- if I'm not mistaken, starting from version 0.23, index object is
RangeIndextype
From the official doc:
RangeIndexis a memory-saving special case ofInt64Indexlimited to representing monotonic ranges. UsingRangeIndexmay in some instances improve computing speed.
In case of a huge index range, that makes sense, using the representation of the index, instead of defining the whole index at once (saving memory).
Therefore, an example (using Series, but it applies to DataFrame also):
>>> import pandas as pd
>>>
>>> countries = ['China', 'India', 'USA']
>>> ds = pd.Series(countries)
>>>
>>>
>>> type(ds.index)
<class 'pandas.core.indexes.range.RangeIndex'>
>>> ds.index
RangeIndex(start=0, stop=3, step=1)
>>>
>>> ds.index += 1
>>>
>>> ds.index
RangeIndex(start=1, stop=4, step=1)
>>>
>>> ds
1 China
2 India
3 USA
dtype: object
>>>
As you can see, the increment of the index object, changes the start and stop parameters.
来源:https://stackoverflow.com/questions/20167930/start-index-at-1-for-pandas-dataframe