Jupyter notebook display two pandas tables side by side

ε祈祈猫儿з 提交于 2019-11-27 10:14:42

You could override the CSS of the output code. It uses flex-direction: column by default. Try changing it to row instead. Here's an example:

import pandas as pd
import numpy as np
from IPython.display import display, HTML

CSS = """
.output {
    flex-direction: row;
}
"""

HTML('<style>{}</style>'.format(CSS))

You could, of course, customize the CSS further as you wish.

If you wish to target only one cell's output, try using the :nth-child() selector. For example, this code will modify the CSS of the output of only the 5th cell in the notebook:

CSS = """
div.cell:nth-child(5) .output {
    flex-direction: row;
}
"""

I have ended up writing a function that can do this:

from IPython.display import display_html
def display_side_by_side(*args):
    html_str=''
    for df in args:
        html_str+=df.to_html()
    display_html(html_str.replace('table','table style="display:inline"'),raw=True)

Example usage:

df1 = pd.DataFrame(np.arange(12).reshape((3,4)),columns=['A','B','C','D',])
df2 = pd.DataFrame(np.arange(16).reshape((4,4)),columns=['A','B','C','D',])
display_side_by_side(df1,df2,df1)

Starting from pandas 0.17.1 the visualization of DataFrames can be directly modified with pandas styling methods

To display two DataFrames side by side you must use set_table_attributes with the argument "style='display:inline'" as suggested in ntg answer. This will return two Styler objects, to display the aligned dataframes just pass their joined HTML representation through the display_html method from IPython:

import numpy as np
import pandas as pd   
from IPython.display import display_html 

df1 = pd.DataFrame(np.arange(12).reshape((3,4)),columns=['A','B','C','D',])
df2 = pd.DataFrame(np.arange(16).reshape((4,4)),columns=['A','B','C','D',])

df1_styler = df1.style.set_table_attributes("style='display:inline'").set_caption('Table 1')
df2_styler = df2.style.set_table_attributes("style='display:inline'").set_caption('Table 2')

display_html(df1_styler._repr_html_()+df2_styler._repr_html_(), raw=True)

With this method is also easier to add other styling options. Here's how to add a caption, as requested here:

df1_styler = df1.style.\
                set_table_attributes("style='display:inline'").\
                set_caption('Caption table 1')
df2_styler = df2.style.\
                set_table_attributes("style='display:inline'").\
                set_caption('Caption table 2')
display_html(df1_styler._repr_html_()+df2_styler._repr_html_(), raw=True)

Here is Jake Vanderplas' solution I came across just the other day:

import numpy as np
import pandas as pd

class display(object):
    """Display HTML representation of multiple objects"""
    template = """<div style="float: left; padding: 10px;">
    <p style='font-family:"Courier New", Courier, monospace'>{0}</p>{1}
    </div>"""

    def __init__(self, *args):
        self.args = args

    def _repr_html_(self):
        return '\n'.join(self.template.format(a, eval(a)._repr_html_())
                     for a in self.args)

    def __repr__(self):
       return '\n\n'.join(a + '\n' + repr(eval(a))
                       for a in self.args)

Credit: https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.08-Aggregation-and-Grouping.ipynb

Yasin Zähringer

My solution just builds a table in HTML without any CSS hacks and outputs it:

import pandas as pd
from IPython.display import display,HTML

def multi_column_df_display(list_dfs, cols=3):
    html_table = "<table style='width:100%; border:0px'>{content}</table>"
    html_row = "<tr style='border:0px'>{content}</tr>"
    html_cell = "<td style='width:{width}%;vertical-align:top;border:0px'>{{content}}</td>"
    html_cell = html_cell.format(width=100/cols)

    cells = [ html_cell.format(content=df.to_html()) for df in list_dfs ]
    cells += (cols - (len(list_dfs)%cols)) * [html_cell.format(content="")] # pad
    rows = [ html_row.format(content="".join(cells[i:i+cols])) for i in range(0,len(cells),cols)]
    display(HTML(html_table.format(content="".join(rows))))

list_dfs = []
list_dfs.append( pd.DataFrame(2*[{"x":"hello"}]) )
list_dfs.append( pd.DataFrame(2*[{"x":"world"}]) )
multi_column_df_display(2*list_dfs)

Antony Hatchkins

This adds headers to @nts's answer:

from IPython.display import display_html

def mydisplay(dfs, names=[]):
    html_str = ''
    if names:
        html_str += ('<tr>' + 
                     ''.join(f'<td style="text-align:center">{name}</td>' for name in names) + 
                     '</tr>')
    html_str += ('<tr>' + 
                 ''.join(f'<td style="vertical-align:top"> {df.to_html(index=False)}</td>' 
                         for df in dfs) + 
                 '</tr>')
    html_str = f'<table>{html_str}</table>'
    html_str = html_str.replace('table','table style="display:inline"')
    display_html(html_str, raw=True)

I ended up using HBOX

import ipywidgets as ipyw

def get_html_table(target_df, title):
    df_style = target_df.style.set_table_attributes("style='border:2px solid;font-size:10px;margin:10px'").set_caption(title)
    return df_style._repr_html_()

df_2_html_table = get_html_table(df_2, 'Data from Google Sheet')
df_4_html_table = get_html_table(df_4, 'Data from Jira')
ipyw.HBox((ipyw.HTML(df_2_html_table),ipyw.HTML(df_4_html_table)))

Gibbone's answer worked for me! If you want extra space between the tables go to the code he proposed and add this "\xa0\xa0\xa0" to the following code line.

display_html(df1_styler._repr_html_()+"\xa0\xa0\xa0"+df2_styler._repr_html_(), raw=True)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!