convert numeric sas date to datetime in Pandas

房东的猫 提交于 2019-12-28 13:56:26

问题


I am using Pandas 0.18 and read_sas to load a sas7bdat dataset.

The dates in the Pandas dataframe appear as:

Out[56]: 
0    19411.0
1    19325.0
2    19325.0
3    19443.0
4    19778.0
Name: sas_date, dtype: float64

pd.to_datetime does not recognize this format. What should I do parse the date correctly?

Thanks!


回答1:


According to this link,

[A] SAS date value is a value that represents the number of days between January 1, 1960, and a specified date

Therefore, if we convert the numbers to Pandas Timedeltas and add them to 1960-1-1 we can recover the date:

import numpy as np
import pandas as pd

ser = pd.Series([19411.0, 19325.0, 19325.0, 19443.0, 19778.0])
ser = pd.to_timedelta(ser, unit='D') + pd.Timestamp('1960-1-1')

yields

0   2013-02-22
1   2012-11-28
2   2012-11-28
3   2013-03-26
4   2014-02-24
dtype: datetime64[ns]


来源:https://stackoverflow.com/questions/36412864/convert-numeric-sas-date-to-datetime-in-pandas

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!